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Abstract—We study a network with a central controller col-
lecting random updates from power-limited sensors. The time-
varying channels between sensors and the central controller are
modeled as ergodic Markov chains while packet-loss may happen
due to decoding error. We measure the data freshness from the
central controller by the metric Age of Synchronization (AoS),
i.e., the average time elapsed since information about a sensor
becomes desynchronized. To minimize the average AoS under
all aforementioned bandwidth and power constraints, we first
relax the hard bandwidth limit and decouple the multi-sensor
problem into a single-sensor constrained Markov decision process
(CMDP), which is then solved through linear programming (LP).
We then propose an asymptotic optimal scheduling policy to solve
the original hard-bandwidth-constrained problem. It is revealed
that sensors are more likely to send updates under better channel
states and higher AoS to save energy and avoid packet-loss.

I. INTRODUCTION

Nowadays, the unprecedented development of Internet tech-
nology has proliferated plenty of real-time applications in-
cluding Internet of Things (IoT), Virtual Reality (VR), Aug-
mented Reality (AR), etc. In these scenarios, update packets
are generated randomly by the external environment due to
alternation and mobility, and a central controller collects such
random updates from a large number of sensors under wireless
constraints like bandwidth and power consumption. The data
synchronicity of the central controller directly determines the
quality of service in such networks.

To measure data synchronicity from the perspective of the
receiver, the metric Age of Synchronization (AoS) is proposed
[1]. By definition, it shows the time elapsed since the in-
formation at the receiver is no longer synchronized with the
source. Due to the difference between AoS and metric Age
of Information (AoI) [2], AoI minimization strategies [3]–
[7] cannot guarantee a good AoS performance. The analysis
and design of AoS minimization strategies have been studied
in [8]–[11]. However, the above analyses only assume time-
invariant channels during transmission, which is impractical
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in wireless scenarios. Although the data desynchronization
status in an error-prone network has been studied in [12],
the goal in that work aims at minimizing the average number
of desynchronized devices. The average time of desynchro-
nization duration across the network has not been taken into
account.

To analyze AoS performance and design scheduling strate-
gies in a time-varying and error-prone wireless network, in
our work, we consider a central decision-making unit (central
controller) collecting information from multiple information-
collecting units (sensors), as depicted in Fig. 1, where the
communication channels connecting each sensor and the BS
are quantized into discrete states and vary across slots. The
goal is to design scheduling strategy that satisfies the power
constraint of each sensor and the limited bandwidth shared by
all the sensors. The contributions of the paper are as follows:
we first formulate the optimization problem of minimizing
average AoS under both bandwidth and power constraints in
a multi-sensor time-varying network. Next, we decouple the
multi-sensor scheduling problem into a single-sensor trans-
mission problem by relaxing the hard bandwidth constraint.
The single-sensor transmission problem can be formulated into
a constrained Markov decision process (CMDP) and solved
through linear programming (LP). Finally, we propose an
asymptotic policy to solve the original scheduling problem
with a hard bandwidth limit.

The rest of the paper is organized as follows: We introduce
the system model, the metric AoS, and problem formulation in
Section II. Then, we decouple the problem into a single-sensor
CMDP and solve it through LP in Section III. In Section IV,
we propose a multi-sensor scheduling algorithm and analyze
its theoretic performance. The simulation results are provided
in Section V and Section VI draws the conclusion.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this work, we consider a network where a central
controller collects information from N sensors tracking in-
dependent random external updates, as shown in Fig. 1.
Consider a discrete-time scenario and use t ∈ {1, · · · , T} to
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Fig. 1. Illustration of a vehicular network where a leader collects real-time
information from followers through wireless channels.

denote the index of the current slot. We assume sensors are
connected to the controller through different wireless time-
varying channels with a shared bandwidth. At the beginning
of each slot, at most M sensors can be scheduled to transmit
their updates simultaneously. Let un(t) denote whether sensor
n is scheduled to transmit its update during slot t. If un(t) = 1,
sensor n transmits its update to the controller; if un(t) = 0,
sensor n idles in this slot. The bandwidth constraint implies
the following restriction on un(t):

N∑
n=1

un(t) ≤ M, ∀t. (1)

To model the time-varying channels between sensors and the
controller, we classify the channel condition into Q states. Let
qn(t) ∈ {1, 2, . . . , Q} be the current channel state between
sensor n and the controller. Larger qn(t) demonstrates a
noisier channel. We assume the channel state qn(t) appears
independently with Pr(qn(t) = q) = ηn,q, and the distribution
satisfies:

Q∑
q=1

ηn,q = 1, ∀n = 1, . . . , N. (2)

To combat channel fading, each sensor consumes w(q) units
of energy when transmitting updates under channel state q.
The energy consumption increases when the channel becomes
noisier, so w(q) is a non-decreasing function of q, i.e.,
w(1) < · · · < w(Q). Each sensor has a power constraint En.
The scheduling decision un(π) = [un(1), un(2), . . . , un(T )]
assigned to sensor n by a legal policy π must satisfy the power
constraint, i.e.,

lim
T→∞

En(un(π)) = lim
T→∞

1

T

T∑
t=1

un(t)w(qn(t)) ≤ En, ∀n.

(3)
Different from [6], [7], we assume the transmission to be

imperfect and each transmission under channel state q fails
with probability ε(q).

B. Age of Synchronization

In this work, we measure the freshness of data stored in
the central controller using the metric Age of Synchronization
(AoS) [1]. By definition, the AoS of sensor n is the time

elapsed since information about sensor n in the controller
becomes desynchronized compared with the sensor. To provide
its closed-form expression, we first consider a single-sensor-
discrete-time scenario.

Suppose that the i-th update of source n is generated in
time slot gi and is received by the controller by the end of
slot ri. Let M(t) = maxi∈N+{i|ri ≤ t} be the index of the
freshest update received by the controller up to slot t. If the
generation time-stamp of update M(t)+1 is earlier than time
t, information at the central controller is desynchronized at
time t. By definition, the AoS in slot t can be computed as
follows:

x(t) = (t− gM(t)+1)
+, (4)

where (·)+ = max{0, ·}. Next, we will discuss how AoS of a
sensor evolves with scheduling decision un(t) and the external
update according to (4).

Let Λn(t) ∈ {0, 1} denote whether the n-th sensor observes
a new update during slot t. When Λn(t) = 1, sensor n
observes an update in slot t and we assume the sensor
can transmit it after the beginning of slot (t + 1). Suppose
Λn(t) follows i.i.d Bernoulli distribution with expectation
E[Λn(t)] = λn. In this work we assume the central controller
is only interested in the ”freshest” information from sensor n,
so older update packets stored at sensor n will be discarded
once a new packet arrives.

Denote xn(t) to be the AoS of sensor n at the beginning
of slot t. Recall that un(t) is the scheduling decision and
un(t) = 0 implies sensor n is not scheduled in slot t. Then, if
the current AoS xn(t) > 0, which means information stored at
the controller is already desynchronized, the AoS will increase
linearly according to (4), i.e., xn(t+1) = xn(t)+1; otherwise,
if xn(t) = 0, the AoS of the next slot will be determined by
whether the sensor generates a new update in slot t. If Λn(t) =
1, the information at the controller will be desynchronized at
the start of next slot and xn(t + 1) = 1; if Λn(t) = 0, the
AoS will remain 0 at next slot, i.e., xn(t+ 1) = 0.

If un(t) = 1, the sensor will transmit a packet that is
generated before slot t to the central controller in slot t. If
currently xn(t) = 0, then the AoS at the beginning of the
next slot xn(t+1) will be determined by whether there is an
update in slot t: If Λn(t) = 0, the sensor does not observe a
new update, then xn(t+ 1) = 0; otherwise, if Λn(t) = 1, the
AoS becomes xn(t+ 1) = 1 due to desynchronization. If the
current AoS xn(t) > 0, information at the controller is already
desynchronized. Then, the AoS in the next slot xn(t+1) will
be determined by both transmission result (succeeds or fails)
and Λn(t): If the transmission is successful and Λn(t) = 0, the
AoS will drop to 0, i.e., xn(t+ 1) = 0; if the transmission is
successful but Λn(t) = 1, a new packet has been generated and
the AoS will drop to 1, i.e., xn(t+1) = 1; if the transmission
fails, the AoS will increase, i.e. xn(t + 1) = xn(t) + 1. As
a conclusion, we can formulate the following AoS evolution
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relationship:

xn(t+ 1) =



0, xn(t) = 0,Λn(t) = 0;

1, xn(t) = 0,Λn(t) = 1;

0, Λn(t) = 0, un(t) = 1, succeeds;
1, Λn(t) = 1, un(t) = 1, succeeds;
xn(t) + 1, otherwise.

(5)

C. Problem Formulation

We aim at designing a scheduling strategy that minimizes
the expected average AoS performance of all N sensors over
an infinite horizon. The average AoS of all sensors at the
beginning of each slot following a specific scheduling policy
π can be computed by:

J(π) = lim
T→∞

{ 1

NT
Eπ

[
T∑

t=1

N∑
n=1

xn(t)

]
}. (6)

Let ΠNA denote the class of all non-anticipating policies,
where decisions {un(t)} are made based on current and
past information about AoS {xn(τ)}τ≤t and channel states
{qn(t)}. No prediction on the future channel states can be
used. We aim at designing a non-anticipating policy π ∈ ΠNA

for the central controller to schedule sensors under bandwidth
and power constraints. The problem is formulated as follows:

Problem 1: (B&P-Constrained AoS)

π∗ = arg min
π∈ΠNA

lim
T→∞

{ 1

NT
Eπ

[
T∑

t=1

N∑
n=1

xn(t)

]
}, (7a)

s.t. Eπ

[
N∑

n=1

un(t)

]
≤ M,∀t, (7b)

lim
T→∞

1

T
Eπ

[
T∑

t=1

un(t)w(qn(t))

]
≤ En, ∀n. (7c)

III. DECOUPLED SINGLE-SENSOR TRANSMISSION
STRATEGY

Problem 1 with the hard bandwidth is an NP-hard integer
programming. Therefore, we relax the hard bandwidth (7b)
and decouple Problem 1 into a single-sensor constrained
Markov decision process (CMDP). By exploiting the threshold
structure of its optimum solution, we solve the decoupled
problem through linear programming (LP).

A. Single-Sensor Decouple

We first relax the hard bandwidth constraint (7b) into a time-
average bandwidth constraint. After relaxation, more than M
sensors can transmit updates in a single slot, but the average
number of sensors scheduled per slot remains no larger than
M . The relaxed problem is modified as follows:

Problem 2: (RB&P-Constrained AoS)

π∗
R = arg min

π∈ΠNA

lim
T→∞

{ 1

NT
Eπ

[
T∑

t=1

N∑
n=1

xn(t)

]
}, (8a)

s.t. lim
T→∞

1

T
Eπ

[
T∑

t=1

N∑
n=1

un(t)

]
≤ M, (8b)

lim
T→∞

1

T
Eπ

[
T∑

t=1

un(t)w(qn(t))

]
≤ En, ∀n. (8c)

To solve Problem 2, we place the relaxed bandwidth con-
straint (8b) into the object (7a) and formulate the Lagrange
function as follows:

L(π,W ) =

lim
T→∞

1

NT
Eπ

[
T∑

t=1

N∑
n=1

[xn(t) +Wun(t)]

]
− WM

N
. (9)

Denote πR(W ) to be the optimal policy that minimizes the
Lagrange function L(π,W ) with fixed Lagrange multiplier W
under power constraint (8c). According to [14], the optimal
policy π∗

R of Problem 2 is a mixture of no more than two
such policies, denoted as πR(W1) and πR(W2), with different
multipliers. Therefore, we will first focus on finding the
optimal policy πR(W ) with a fixed Lagrange multiplier W
to minimize (9) and then talk about how to obtain W1 and
W2 that constitute policy π∗

R.
Since the Lagrange function (9) has no bandwidth con-

straint, we can decouple Problem 2 into N single-sensor
minimization problems with exclusive power constraints. The
n-th single-sensor problem is explained as follows:

Problem 3: (Decoupled P-Constrained Cost)

π∗
n = arg min

π∈ΠNA

lim
T→∞

1

T
Eπ

[
T∑

t=1

[xn(t) +Wun(t)]

]
, (10a)

s.t. lim
T→∞

1

T
Eπ

[
T∑

t=1

un(t)w(qn(t))

]
≤ En. (10b)

B. Constrained Markov Decision Process Formulation

When considering the decoupled model, we omit the sub-
script n for simplicity. Notice that Problem 3 can be formulat-
ed into a constrained Markov decision process (CMDP). The
fundamental elements are explained as follows:

State Space: The state in slot t consists of the sensor’s
current AoS x(t) and the channel state q(t).

Action Space: The sensor’s action of whether to transmit
or idle in slot t is denoted as a(t) ∈ {0, 1}, where a(t) = 0
indicates the sensor is idle and a(t) = 1 implies a transmission
decision.

Probability Transfer Function: Following the AoS evo-
lution relationship (5), the probability transfer function from
state (x, q) is as follows:

Pr((0, q) → (0, q′)|a(t) = 0) = (1− λ)ηq′ , (11a)
Pr((0, q) → (1, q′)|a(t) = 0) = ληq′ , (11b)
Pr((0, q) → (0, q′)|a(t) = 1) = (1− λ)ηq′ , (11c)
Pr((0, q) → (1, q′)|a(t) = 1) = ληq′ , (11d)

and when x > 0,

Pr((x, q) → (x+ 1, q′)|a(t) = 0) = ηq′ , (11e)
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Pr((x, q) → (0, q′)|a(t) = 1) = (1− λ)(1− εq)ηq′ , (11f)
Pr((x, q) → (1, q)|a(t) = 1) = λ(1− εq)ηq′ , (11g)
Pr((x, q) → (x+ 1, q)|a(t) = 1) = εqηq′ . (11h)

One-step Cost: For a given state (x, q), the one-step cost by
taking action a is a sum of the current AoS and a scheduling
penalty incurred by the Lagrange multiplier, i.e.,

CX(x, q, a) = x+Wa. (12)

The one-step power consumption is:

CP (x, q, a) = ω(q)a. (13)

The object of the CMDP is to find the optimal scheduling
policy under an average power constraint, which minimizes
the overall cost containing both AoS and scheduling penalty:

π∗
M = arg min

π∈ΠNA

lim
T→∞

1

T
Eπ

[
T∑

t=1

CX(x, q, a)

]
, (14a)

s.t.
1

T
Eπ

[
T∑

t=1

CP (x, q, a)

]
≤ E . (14b)

C. Characterization of the Optimal Policy

In this section, we explore the threshold structure of the
optimal policy. Before we start, we provide definitions of sta-
tionary randomized policy and stationary deterministic policy:

Definition 1: Let ΠSD and ΠSR denote the class of sta-
tionary deterministic policy and stationary randomized policy
respectively. Given the current state (x(t) = x, q(t) = q),
a stationary deterministic policy πSD ∈ ΠSD selects action
a(t) = 1 based on a deterministic mapping from state space
to action space, i.e., a(t) : (x, q) → {0, 1}. A stationary
randomized policy πSR ∈ ΠSR selects action a(t) = 1 with
probability ξx,q ∈ [0, 1].

Similar to the analyses in [14] and [6], the optimal policy
to the CMDP has the following property: The optimal policy
π∗
M to the CMDP is a stationary randomized policy and it is a

mixture of no more than two stationary deterministic policies
πSD1 and πSD2 . Let λ ∈ [0, 1] denote the weight of following
policy πSD1 , then the optimal stationary randomized policy
can be expressed as follows:

π∗
M = λπSD1 + (1− λ)πSD2 . (15)

The two stationary deterministic policies πSD1 and πSD2

can be obtained by solving the Lagrange problem of CMDP
with power constraint. Let σ denote the Lagrange multiplier,
then the Lagrange problem is explained as follows:

π∗
SD = arg min

π∈ΠNA

lim
T→∞

1

T
Eπ[

T∑
t=1

[CX(x(t), q(t), a(t))

+σCP (x(t), q(t), a(t))]]− σE . (16)

Denote γ to be the time average cost following the optimum
policy π∗

SD. For fixed Lagrange multipliers W and σ, the
optimum policy must satisfy the following Bellman equations
where V (x, q) is the cost-to-go function. By intuition, there is

no need to send updates when the AoS is 0. Hence, we have:

V (0, q) + γ =

Q∑
q′=1

ηq′ [λV (1, q′) + (1− λ)V (0, q′)], (17a)

and for x > 0,

V (x, q) + γ = min{CX(x, q, 0) +

Q∑
q′=1

ηq′V (x+ 1, q′),

CX(x, q, 1) + σCP (x, q, 1) +

Q∑
q′=1

ηq′ [ε(q)V (x+ 1, q′)

+(1− λ)(1− ε(q))V (0, q′) + λ(1− ε(q))V (1, q′)]}.
(17b)

With the above Bellman equations, we can obtain the
threshold structure of the optimum policy in the following
lemma 1.

Lemma 1: For any channel state q, there exists a threshold
τq so that it is always optimal to transmit when x > τq and
always optimal to idle when x < τq , i.e., a∗(x, q) = 1 when
x > τq; a∗(x, q) = 0 when x < τq . Moreover, the set of τq is
non-decreasing, i.e. τ1 ≤ τ2 ≤ · · · ≤ τQ.

Since the optimal stationary randomized policy to Problem
3 is a mixture of no more than two stationary deterministic
policies with threshold structures, there exists a threshold X
for policy π∗

M so that it is always optimal to transmit when
AoS is larger than X .

D. Probabilistic Scheduling Policy for Single Sensor

We use a set of probabilities {ξx,q} to denote a stationary
randomized policy, where ξx,q represents the probability of
transmitting when AoS is x and channel state is q. Our goal is
to find the optimal strategy {ξ∗x,q} that minimizes the overall
cost. Due to the threshold structure, it is always optimal to
transmit when x > X , hence ξ∗x,q = 1, ∀x > X . To compute
{ξ∗x,q}x≤X , let µx be the steady state distribution that the AoS
equals x and denote yx,q = µxηqξx,q . We then construct an
LP as follows:

Theorem 1: The decoupled P-Constrained Problem 3 is
equivalent to solving {µ∗

x, y
∗
x,q} in the following LP problem:

{µ∗
x, y

∗
x,q} =arg min

{µx,yx,q}

{
X−1∑
x=1

xµx +
1

1− γ
XµX

+
γ

(1− γ)2
µX +W

(
X−1∑
x=1

Q∑
q=1

yx,q +
1

1− γ
µX

)}
, (18a)

s.t.
X−1∑
x=0

µx +
1

1− γ
µX = 1, (18b)

λµ0 = (1− λ)

[
X−1∑
x=1

Q∑
q=1

yx,q(1− ε(q)) + µX

]
, (18c)

µ1 = λ

(
µ0 + µX +

X−1∑
x=1

Q∑
q=1

yx,q(1− ε(q))

)
, (18d)
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µx = µx−1 −
Q∑

q=1

(1− ε(q))yx−1,q, (18e)

X−1∑
x=1

Q∑
q=1

yx,qw(q) +
1

1− γ

Q∑
q=1

ηqw(q)µX ≤ E , (18f)

0 ≤ µx ≤ 1, 0 ≤ yx,q ≤ µxηq, ∀x, q. (18g)

For a fixed multiplier W , let {µx(W ), yx,q(W )} be the
solution of the LP problem and let {ξx,q(W )} be the opti-
mum policy. The threshold structure obtained in Section III-C
implies the following properties on ξx,q(W ):

Theorem 2: For any channel state q and Lagrange multipli-
er W , there exists a threshold τq so that it is always optimal
to transmit when x > τq , i.e., ξx,q(W ) = 1; it is always
optimal to idle when x < τq , i.e. ξx,q(W ) = 0. The scheduling
decision when x = τq is a randomized strategy with transmit
probability 0 < ξx,q(W ) ≤ 1. Besides, the set of threshold τq
is non-decreasing, i.e., τ1 ≤ τ2 ≤ · · · ≤ τQ.

The proportion of slots spent on scheduling the sensor,
denoted as S(W ), can be computed as follows.

S(W ) =
X−1∑
x=1

Q∑
q−1

yx,q(W ) +
1

1− γ
µX(W ). (19)

IV. MULTI-SENSOR SCHEDULING POLICY

In this part, we first determine the Lagrange multiplier
and find the optimal policy π∗

R to Problem 2 with a relaxed
bandwidth constraint. We then propose an asymptotic optimal
policy to solve the original multi-sensor scheduling problem
with a hard bandwidth limit.

A. Multi-Sensor Scheduling with Relaxed Bandwidth

Denote {µn,W
x , yn,Wx,q } to be the optimum solution to the LP

of sensor n with Lagrange multiplier W . Suppose after the
k-th iteration, the Lagrange multiplier is W (k). Using (19),
the consumed bandwidth bn(W

(k)) for each sensor n can be
computed by:

bn(W
(k)) =

X−1∑
x=1

Q∑
q=1

yn,W
(k)

x,q +
1

1− γ
µn,W (k)

X . (20)

We start with W (1) = 0. If
∑N

n=1 bn(W
(1)) ≤ M , it

indicates that the relaxed bandwidth can satisfy all sensors.
In this case, the optimal distribution can be obtained from

{µn,∗
x , yn,∗x,q } = {µn,W (1)

x , yn,W
(1)

x,q }.

Otherwise, we obtain a Lagrange multiplier sequence W (k)

iteratively through the subgradient method. The subgradient
can be computed by:

dW (k) =
N∑

n=1

bn(W
(k))−M. (21)

Let δ(k) be a sequence of decreasing stepsizes. The Lagrange
multiplier used in the (k+1)-th iteration can be computed by:

W (k+1) = W (k) − δ(k)dW (k). (22)

The iteration ends with |W (k)−W (k−1)| < ϵ, then we choose
two items from the obtained sequence:

Wu = min
k

{W (k)|
N∑

n=1

bn(W
(k)) ≥ M}, (23a)

Wl = max
k

{W (k)|
N∑

n=1

bn(W
(k)) < M}. (23b)

The optimal stationary randomized policy π∗
R is a mixture

of two optimum policies corresponding to multipliers Wu and
Wl. The AoS and scheduling probability distribution to policy
π∗
R, denoted by {µn,∗

x , yn,∗x,q }, can be obtained by a weighted
average of {µn,Wu

x , yn,Wu
x,q } and {µn,Wl

x , yn,Wl
x,q } as follows:

{µn,∗
x , yn,∗x,q } =ρ{µn,Wu

x , yn,Wu
x,q }

+ (1− ρ){µn,Wl
x , yn,Wl

x,q },
(24)

where the weight λ is computed by:

ρ =
M −

∑N
n=1 bn(Wl)∑N

n=1 bn(Wu)−
∑N

n=1 bn(Wl)
. (25)

Finally, according to the threshold structure explained in
Theorem 2, the optimum scheduling probability ξn,∗x,q under
relaxed bandwidth constraint can be computed by:

ξn,∗x,q =

{
yn,∗
x,q

µn,∗
x ηn,q

, x ≤ X;

1, x > X.
(26)

Let Tπ(t) be the set of sensors scheduled under a policy π at
slot t. Policy π∗

R to Problem 2 is constructed as follows: At the
beginning of each slot t, the central controller observes each
sensor’s AoS xn(t) and channel state qn(t), then select sensor
n with probability ξn,∗xn(t),qn(t)

into set Tπ∗
R
(t). The expected

AoS performance of policy π∗
R formulates the lower bound of

average AoS to Problem 1. Let π be a non-anticipated policy
satisfying the hard bandwidth constraint in Problem 1, then
we have:

J(π) ≥ AoS∗
R =

1

N

N∑
N=1

X∑
x=1

xµn,∗
x . (27)

B. Scheduling with Hard Bandwidth Constraint

In this part, we propose a truncated scheduling policy π̂ to
solve Problem 1 with a hard bandwidth based on π∗

R: recall
that Tπ∗

R
(t) is the set of sensors policy π∗

R chooses to schedule.
The truncated scheduling policy π̂ is constructed by randomly
selecting as many but no more than M sensors in set Tπ∗

R
(t)

to transmit their updates in this time slot. It can be proved that
our proposed policy approaches the AoS∗

R asymptoticly when
the number of sensors N → ∞.

V. SIMULATION

We first study the optimal transmit strategy in a single-
sensor network with a power constraint. We consider a Q = 4
states channel with transmission power being wq = 2q . We
assume each channel state appears with the same probability,
i.e. ηq = 0.25, and the power constraint E = 0.45

∑Q
q=1 ηqwq .
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Fig. 2. Scheduling Strategy for Single Sensor with Power Constraint under
Different Update Rates and Packet-loss Rates

The packet-loss probability ε(q) = qϵ. Fig. 2 plots the schedul-
ing strategy under different packet-loss rates and different
update rates. It is shown that with a lower update rate, the
sensor updates less frequently and is more willing to transmit
under lower AoS states in spite of bad channel states. Besides,
with higher error rate ϵ, the sensor is more willing to sacrifice
AoS performance to avoid transmitting in worse channels with
larger q. The strategy verifies the threshold structure explained
in Theorem 2.

Next, we provide simulation results in multi-sensor net-
works to demonstrate the average AoS performance of our
proposed scheduling policy. We consider a Q = 4 state
channel with distribution η = [0.135, 0.239, 0.232, 0.394], and
the packet-loss probability is ε(q) = 0.1q. Each sensor updates
in every slot with probability λn = 0.5 and consumes wq = q
energy to transmit one packet. We assume all sensors have
the same power constraint E = 0.45

∑Q
q=1 ηqwq . We simulate

the scheduling process over a consecutive of T = 106 slots
and study the average AoS performance as a function of
number of sensors, N = {10, 15, · · · , 50}. Denote Cn(t) as
the total power consumed by sensor n until time slot t and let
R(t) = {n|Ent − Cn(t) ≥ 0} denote the set of sensors that
have enough power to transmit in time slot t. We compare
our proposed policy with a greedy policy which selects in each
slot as many as no more than M sensors with the highest AoS
from set R(t) to send updates. As can be seen from Fig. 3,
the proposed scheduling policy achieves a close average AoS
performance to the lower bound and a near 50% AoS decrease
compared to the greedy policy when N = 50.

VI. CONCLUSION

In this work, we consider a multi-sensor scheduling problem
with bandwidth and power constraints in time-varying wireless
channels. We measure the data freshness of each sensor
through the metric Age of Synchronization. To minimize the
average AoS performance, we first decouple the multi-sensor
problem into a single-sensor CMDP, then reveal the thresh-
old structure of the optimal transmission policy and finally
approach the optimum solution through Linear Programming.
We propose an asymptotic optimal policy to satisfy the hard
bandwidth constraint. Our work suggests that sensors should
exploit better channel states and send their updates at higher
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Fig. 3. Average AoS performance as a number of sensors N

AoS in order to save power and raise transmission success
probability, also allowing other sensors to transmit their more
urgent updates.
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