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Abstract

Solving image inverse problems (e.g., super-resolution and inpainting) requires
generating a high fidelity image that matches the given input (the low-resolution
image or the masked image). By using the input image as guidance, we can
leverage a pretrained diffusion generation model to solve a wide range of image
inversion tasks without task specific model fine-tuning. In this work, we propose
diffusion policy gradient (DPG), a tractable computation method to estimate the
score function given the guidance image. Our method is robust to both Gaussian
and Poisson noise added to the input image, and improves the image restoration
consistency and quality on FFHQ, ImageNet and LSUN datasets on both linear and
non-linear image inversion tasks (inpainting, super-resolution, motion debluring,
non-linear deblurring, etc.).

1 Introduction and Problem Formulation

Denoising Diffusion Probabilistic Models Ho et al. [2020], Sohl-Dickstein et al. [2015] provide
tractable solutions to modeling a high quality image distribution. Their modeling and generation
capabilities have been exploited in a wide range of image inverse problems Dhariwal and Nichol
[2021], Blattmann et al. [2022], Rombach et al. [2021], Kawar et al. [2022], in which the goal is to
generate a high quality image that matches the given input image. However, training a diffusion model
from scratch is time-consuming. An alternative solution is to use the input image as guidance, and
then generate the target image using a pretrained diffusion generation model through guided diffusion
Ho and Salimans [2021], Dhariwal and Nichol [2021]. However, when the input guidance image
is distorted by random noise and becomes inaccurate, solving image inversion problems becomes
extremely challenging.

We now describe the noisy image inverse problem in more details. Suppose x0 represents a high
quality image and let p0(x0) be its distribution. Let y be a noisy input image, which is obtained by
feeding a high quality image x0 through an operator A, i.e.,

y = A(x0) + n, (1)

where n is the distorted random noise. The operator A depends on the image inversion tasks. Notice
that the operator A is often low-rank or invertible, making the computation of the inverse of y
impossible.

An alternative solution to find x0 is to use the distribution p0(x0) as a priori, and compute and sample
from the distribution p0(x0|y) = p0(x0)p0(y|x0)

p(y) ∝ p0(x0)p0(y|x0). Information about the prior
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p0(x0), i.e., the distribution of the high quality images can be obtained via an image generative model
such as GAN and diffusion models. To solve image inverse problems for given input image y using
diffusion models, we first revisit the forward diffusion process that turns p0(x0|y) into a Gaussian,
i.e., dx = − 1

2β(t)xdt +
√

β(t)dw, t ∈ [0, T ], where β(t) : [0, T ] 7→ R+ is a monotonicallly
increasing function and w is a Wiener process. Let pt|0(xt|x0) = N (xt|

√
α(t)x0, (1− α(t)I) be

the conditional density function of xt given x0, where α(t) := exp
(
−
∫ t

0
β(s)ds

)
. Sampling from

p0(x0|y) requires running the reverse of the forward diffusion process, i.e., running the following
SDE by starting from xT ∼ N (0, I):

dx =

[
−β(t)

2
x− β(t)∇x log pt(x|y)

]
dt+

√
β(t)dw. (2)

Related Work To sample from equation 2, we need to know the score function of the st(xt,y) :=
∇xt log pt(xt|y), which can be decomposed by:

st(xt,y) := ∇xt
log pt(xt|y) = ∇xt

log pt(xt,y) = ∇xt
log pt(xt) +∇xt

log pt(y|xt). (3)

We notice that the first term in equation 3 is known by the pretrained diffusion model ϵθ(xt, t) =
∇xt

log pt(xt). The challenge is to compute the second term ∇x log pt(xt|y). There are currently
two lines of work in utilizing diffusion models to solve image inverse problems. The first line of
work utilizes the low rank structure of the operator A, and directly plugs the known information
y into the image generation process. SDEdit, Blended Diffusion and DiffEdit Meng et al. [2022],
Avrahami et al. [2022, 2023], Couairon et al. [2023] solves image inpainting and editing tasks by
plugging y directly into the pixel space. To solve a wider range of tasks such as super-resolution and
deblurring, researchers further decompose A using the singular value decomposition (SVD) Song
et al. [2021], Wang et al. [2023], Kawar et al. [2022], and plug the known information y into the
spectral space of x0. However, those plug-in approaches can only work for linear inverse problems,
and each tasks require a SVD decomposition of the operator A. To solve a wider range of non-linear
image inversion problems, another line of research use the input image y as a guidance, and generate
the target image x0 using guided diffusion Chung et al. [2022, 2023], Meng and Kabashima [2022],
Song et al. [2023c,a], Rout et al. [2023], Song et al. [2023b], Hu et al. [2023]. The challenge in input
image guided approaches is to estimate the guidance score function ∇xt

Ep0|t(x0|xt) [p0(y|x0)] in
each diffusion generation step t, where xt is the intermediate steps of the generation process.

Our Contributions. To improve the image restoration quality and consistency, we propose a new
method to estimate the score function∇x log pt(y|xt). Our contributions are summarized as follows:

(1) By viewing each noisy image as a policy and let the predicted clean image be a state that is
selected by the policy, we propose diffusion policy gradient (DPG), a new method to estimate the
score function given the input image y.

(2) DPG does not need to compute a closed form psuedo-inverse or the spectral decomposition. With
a pretrained diffusion generation model, we can solve a wide range of image inverse problems without
model fine-tuning.

(3) Theoretically, the score function estimated by DPG is more accurate than DPS in the initial
stages of the generation process. In experiments, DPG can restore more high-frequency details of
the images. Quantitative evaluations on FFHQ, ImageNet and LSUN image restoration tasks show
that the proposed method achieves performance improvement in both image restoration quality and
consistency.

2 Methodology

2.1 Computing ∇x log pt(y|xt) as Policy Gradient

We first decompose the second term∇x log pt(xt|y) as follows:

∇xt
log pt(y|xt) ∝ ∇xt

∫
p0|t(x0|xt)︸ ︷︷ ︸

State Density Function

p0(y|x0)︸ ︷︷ ︸
Cost

dx0 =: s̃t(xt,y). (4)
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We notice that the generated image x0 is determined by the intermediate noisy image xt, and
the conditional probability p0|t(y|x0) is highly related to the reconstruction cost between y and
the predicted image x0. Moreover, the score function ∇xt

log pt(xt|y) is the gradient direction
of the expected cost function

∫
p0|t(x0|xt)p0(y|x0)dx0. Therefore, the computation of the score

function equation 4 is closely related to policy gradient in reinforcement learning, where pt(xt|x0) is
the state occupation measure by choosing policy xt, and p0(y|x0) is the cost. The following theorem
enables us to compute the score function equation 4 from the policy gradient perspective:

Theorem 1 (Leibniz Rule) For almost all t ∈ [0, T ], we can compute the score function s̃t(xt,y)
from equation 4 as follows:

s̃t(xt,y) = Ep0|t(x0|xt)

[
p0(y|x0)∇xt

log p0|t(x0|xt)
]

(5)

Proof of Theorem 1 is provided in Appendix 4.1.
2.2 Implementation Details

Tractable Monte Carlo sampling Computing the score function in equation 5 requires sampling
from p0|t(x0|xt), but the closed form distribution p0|t(x0|xt) is hard to compute. To approxi-
mate log p0|t(x0|xt), similar to Chung et al. [2023], Song et al. [2023c], we select q0|t(x0|xt) =

N (x̂0(xt), r
2
t I) to be a Gaussian distribution, where the mean x̂0(xt) is obtained by the Tweedie’s

estimation Efron [2011], Kim and Ye [2021], x̂0(xt) =
1√
αt

(
xt −

√
1− αtϵθ(xt, t)

)
. We select

the variance rt =
1

C×H×W ℓy(x), where C,H,W are the channels, height and weight of the x0 and
ℓy(x) is the reconstruction loss between y and the reconstructed image x̂0. Then, by drawing N sam-
ples {x(1)

0 , · · · ,x(N)
0 } from distribution q0|t(x0|xt), we can approximate the score function s̃t(xt,y)

in equation 5 via the Monte Carlo (MC) method Eq0|t(x0|xt)

[
p0(y|x0)∇xt log q0|t(x0|xt)

]
≈

− 1
2r2tN

∑N
i=1

(
p0(y|x(i)

0 ) · ∇xt
∥x(i)

0 − x̂0(xt)∥22
)

Reward Shaping Similar to policy gradient in reinforcement learning, direct MC estimation of
the policy gradient from suffers from high variance and low convergence rate. We leverage reward
shaping Ng et al. [1999] by computing a bias term b := Ep0|t(x0|xt) [p0(y|x0)] for each sample i

using the leave-one-out cross-validation, b(i) := 1
N−1

∑N
j=1,j ̸=i p0

(
y|x(i)

0

)
. We can then improve

the MC estimation by s̃t(xt,y) = − 1
2r2tN

∑N
i=1

(
(p0(y|x(i)

0 )− b(i))×∇xt∥x
(i)
0 − x̂0(xt)∥22

)
Algorithm 1 Diffusion Policy Gradient (DPG)
Require: T , y, ℓ(y,A(·))
xT ∼ N (0, I)
for t = T − 1 to 0 do

x̂0 ← 1√
αt

(xt + (1− αtϵθ(xt, t))

rt ← 1
C×H×W ℓy(x).

ξ(i) ∼ N (0, I),x
(i)
0 ← x̂0 + rtξ

(i), i =
1, · · · , Nmc.

b(i) ← 1
Nmc−1

∑Nmc

j=1,j ̸=i p0(y|x
(i)
0 )

s̃t(xt,y) ← 1
Nmc

∑Nmc

i=1 (p0(y|x
(i)
0 ) −

b(i))∇xt

(
−∥x(i)

0 − x̂0(xt)∥22
)

st(xt,y)← ϵθ(xt, t) + C s̃t(xt,y)
∥s̃t(xt,y)∥2

2

xt−1 ←DDPM(xt, st(xt,y)).
end for
Return image x0

Score Function Normalization Notice that the
score function computed after reward shaping
contains only direction information. The ex-
act norm of the gradient∇xt

log pt(y|xt) is un-
known. We observe from the classifier free con-
ditional generation experiments that the norm
of the conditional score function is almost the
same as the score of the unconditional gen-
eration score, and the norm is stable during
the whole diffusion inference process. There-
fore, we simply rescale the computed gradient
into a vector with norm C, i.e., assume that
∇xt

log pt(y|xt) ≈ C · 1
∥s̃t(xt,y)∥2

2
s̃t(xt,y) and

plug it into equation 3 to compute the score func-
tion s(xt,y), i.e.,

st(xt,y) ≈ ϵθ(xt, t) + C · s̃t(xt,y)

∥s̃t(xt,y)∥22
. (6)

Using equation 6, we can solve the image inversion problems with the standard DDPM sampling
method, which is displayed in Algorithm 1

3 Experiments
Experiment Setup Similar to Chung et al. [2023], Song et al. [2023b], we test the performance
of our proposed algorithm on three datasets: the FFHQ 256×256 dataset Karras et al. [2019], the
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ImageNet dataset Deng et al. [2009] and the LSUN-Bedroom dataset Yu et al. [2015]. We consider
four types of image inversion tasks: Input DDRM DDNM+ DPS DPG Origin

In
pa

in
tin

g
Su

pe
r-

R
es

ol
ut

io
n

G
au

ss
ia

n
D

eb
lu

rr
in

g
Figure 1: Results on solving linear noisy inverse problems
with Gaussian noise σy = 0.05 on ImageNet Dataset.

(1) Inpainting with a 128×128 masks
added randomly on the figure; (2) 4×super-
resolution with average pooling; (3) Gaussian
deblurring with kernel size 61× 61 and stan-
dard deviation of 3.0; (4) Motion deblurring
with kernel size of 61 and intensity value 0.5
generated by2. We consider that the input im-
age is noisy, i.e., Gaussian noise with variance
σy = 0.05 or Poisson noise with rate λ = 1.0
is added on the input image. For FFHQ ex-
periments, we use the pretrained model from
Chung et al. [2023] (trained on 4.9k images
on FFHQ) and test the performance of 1k val-
idation set; For Imagenet and LSUN exper-
iments, we use the unconditional Imagenet
and LSUN 256×256 generation model from
Dhariwal and Nichol [2021] and the 1k im-
ages on ImageNet validation set 3 and the full
LSUN-Bedroom validation set.
Evaluations We measure both the im-
age restoration quality and consistency
compared with the ground-truth image.
For image restoration quality, we com-
pute the Fréchet inception distance be-
tween the restored images and the train-
ing set; For image restoration consi-
tency, we computes the LPIPS score
Zhang et al. [2018] (VGG Net) between
the restored image and the ground truth
image. Quantative evaluation results
are displayed in Table 3. Selected im-
age restoration samples when the obser-
vation noise are Gaussian and Poisson
are displayed in Fig. 1.

Table 1: Quantitative Results on Linear Inverse Problems
with Gaussian Noise

Inpainting Super-Resolution Deblur (Gauss) Deblur (Motion)
Method FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓

FFHQ 1k Validation Set
DPG 22.44 0.181 22.49 0.214 22.29 0.216 24.44 0.223
DPS 33.12 0.216 39.35 0.214 44.05 0.257 39.02 0.242

DDRM 27.47 0.172 62.15 0.294 74.92 0.332 N/A N/A
DDNM+ 27.34 0.173 46.13 0.260 63.19 0.301 N/A N/A

ImageNet 1k Validation Set
DPG 41.86 0.258 31.02 0.293 34.43 0.314 36.15 0.343
DPS 45.95 0.267 43.60 0.340 62.65 0.434 56.08 0.386

DDRM 50.94 0.246 51.77 0.355 72.49 0.345 N/A N/A
DDNM+ 50.50 0.246 51.08 0.362 71.74 0.410 N/A N/A

LSUN-Bedroom Validation Set
DPG 34.32 0.218 31.44 0.262 38.72 0.277 34.44 0.284
DPS 35.91 0.218 37.42 0.284 48.10 0.320 50.09 0.358

DDRM 37.61 0.205 50.96 0.310 59.04 0.353 N/A N/A
DDNM+ 37.03 0.204 50.15 0.296 74.40 0.336 N/A N/A

We compare the performance with the following methods: Denoising Diffusion Null Space models
(DDNM+) Wang et al. [2023] for noisy problems, Diffusion Posterior Sampling (DPS) Chung et al.
[2022], Denoising Diffusion Restoration Models (DDRM) Kawar et al. [2022] and the Psuedo-Inverse
guided diffusion methods (ΠGDM) Song et al. [2023b] and the Reddiff Mardani et al. [2023]. The
key paremeters for different methods are displayed in Appendix 6.
Analysis First, the FID and LPIPS score of our proposed DPG method is smaller than DPS method,
indicating that DPG has a better image restoration quality than DPS method. This is because the
estimation of the score function by DPG is more accurate than DPS, especially in the initial stages of
the diffusion generation process. Therefore, the shape and structure of the image can be recovered in
an earlier stage of the diffusion process, this gives room to recover high frequency details in later
stage of the image generation. Notice that DDNM+ and DDRM uses a plug-in estimation, i.e., the
known pixels in y are directly used in the generation process. Therefore, the PSNR of DDNM+ and
DDRM are better than the proposed DPG method, but the recovered high frequency details are less.

4 Conclusions
In this paper, we proposed a new method to estimate the score function for solving image inversion
problems. Our method is robust when the input image is perturbed by random noise, and can be
used for solving non-linear inverse problems such as non-linear deblurring. Experiments demonstrate
that the proposed method can improve image restoration quality in both human eye evaluation and

2https://github.com/LeviBorodenko/motionblur
3https://github.com/XingangPan/deep-generative-prior/blob/master/scripts/

imagenet_val_1k.txt
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quantitative metrics. In the future, we will test the performance of DPG method on non-differentiable
image inverse tasks such as JPEG restoration.
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