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Abstract—This paper investigates the achievable message
transmission rate of covert communication over slow fading chan-
nels where the channel coefficient remains unchanged over a finite
transmission block. Such communication is often implemented
with an extremely low transmission power aiming to achieve low
probability of detection by the eavesdropper and under tolerable
probability of decoding error for the legitimate receiver. The
exact expression of achievability and asymptotic covert bounds
are derived, which are shown in accordance with the square
root law in AWGN (Additive White Gaussian Noise) channels
with large transmission blocks. The case that the eavesdropper
has unknown channel state information is also studied in the
paper.

Index Terms—Low Power Communications; Covert Commu-
nications; Security

I. INTRODUCTION

Secure communication or secrecy system was first intro-
duced by Shannon [1] in 1949 as three types of commu-
nication systems: concealment system, privacy system, and
encryption system. While the encryption system has been
widely studied in the past few decades and has been well
utilized in practical systems, the concealment system attracts
some research attentions only in recent years because of its
technical difficulties. A typical concealment system, or covert
communication, refers to the scenario where the transmitter
Alice sends a message to the legitimate receiver Bob while
hiding the message from the eavesdropper Eve, therefore the
existence of the message is concealed from Eve. The methods
of hiding include: 1) embedding a message in useless signals,
or 2) hiding a message in noise [2]. The performance of
a covert communication system is usually measured by the
probability of detection and the secrecy capacity.

Previous research in covert communication focuses on the
probability of false alarm or mis-detection [3]. Recently, Han
et al. introduced the concept of effective secrecy that combines
the probability of false alarm and mis-detection together [4].
Later, Hou and Kramer [5] showed that the capacity with effec-
tive secrecy is the same as the capacity of secure transmission
in wiretap channels in which Alice conceals the message by
hiding it in useless signals. With the proposed novel metric,
fundamental limits on covert communication capacity are
derived. The well known square root law describes the scale
amount of information that can be covertly transmitted [2]. For
binary erasure channels, it is proved that o(

√
n) bits can be

safely transfered over n channel uses [7]. For communications
over AWGN channels, Bash [2] showed that the square root
law holds regardless of average or peak power constraints,
Wang et al. gave the scaling constant with the help of Fisher
information and proved its achievability with source random
coding [6].

It is noted that, these analysis are based on transmitting
with infinite block length. In reality, the limited storage source
and timely update nature of communications require that the
length of transmission package is finite. Tight bounds on
transmit under tolerable probability of decoding error with
finite block length is derived in [8]. In [9], W. Yang and
Y. Polyanskiy investigated the asymptotic behavior of wiretap
channel (WTC) with tolerable information leakage rate and
decoding error probability. In [10], the ε-capacity achieving
region is established to study convert communication over
MIMO channels.

This paper investigates the achievable message transmis-
sion rate of covert communication over slow fading channels
where the channel coefficient remains unchanged over a finite
transmission block. Such communication is often implemented
with an extremely low transmission power aiming to achieve
low probability of detection by the eavesdropper and under
tolerable decoding error probability of the legitimate receiver.
The exact expression of achievability and asymptotic covert
bounds are derived, which are shown in accordance with the
square root law in AWGN channels with large transmission
blocks.

Notations: Random variables are denoted with upper case
letters and their realizations are denoted in lower case letters,
its expectation is denoted as E(·). The probability of a certain
event is denoted as Pr(·). Matrices and vectors are written in
boldface letters. The distribution of a random sequence x =
[X(1), · · · , X(n)] is denoted as p(x). Matrices determinant
and trace are denoted as |·| and Tr(·), respectively. The entropy
of a distribution P is denoted as H(P). Calligraphic letters
denote sets. The real part and the imaginery part of a complex
number are denoted with <(·) and =(·), respectively.

II. PRELIMINARIES

A. System Model

We consider covert communication over a slow fading
channel (WTC) (X , PY Z|X ,Y × Z), as depicted in Fig. 1,
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where a transmitter Alice communicates with a legitimate
receiver Bob in the presence of an eavesdropper Eve. Alice’s
encoder maps the message M into a sequence of complex
transmit symbols x = [X(1), · · · , X(n)] at a rate R and
by a transmit strategy T , where n denotes the length of the
transmission block. If Alice transmits a message in the n time
slots, then T = 1, otherwise, T = 0.

Figure 1. A covert communication channel model with one legitimate receiver
and one passive eavesdropper. Both the main channel and the eavesdropper
channel are slow fading.

After the sequence x goes through the wireless links, Bob
observes the output of the slow fading channel as y =
[Y (1), · · · , Y (n)] with

Y (i) = d
−α/2
B HB(i)X(i) +NB(i), i = 1, 2, ..., n (1)

where i represents the channel use index, NB(i) is zero-mean
circularly symmetric complex Gaussian noise, and HB(i) ∈ C
is the complex baseband equivalent channel coefficient of the
main channel between Alice and Bob. Two real variables dB
and α ∈ R represent distance and pathloss exponent of the
main channel. For example, free space microwave transmission
has a pathloss exponent of α = 2.

Eve observes the output of the symbols from the eaves-
dropper channel and receives a symbol sequence z =
[Z(1), · · · , Z(n)]T , where

Z(i) = d
−α/2
E HE(i)X(i) +NE(i), (2)

and HE(i) ∈ C is a complex baseband channel gain of the
eavesdropper. Two real variables dE , α ∈ R represent the
distance and path loss exponent of the eavesdropper link,
respectively. The noise on the Eve’s receiver NE(i) also
follows a zero-mean circularly symmetric complex Gaussian
distribution. In this paper, we consider both the main channel
and the eavesdropper channel to be quasi-static flat fading,
corresponding to a large coherence time, so that the channel
coefficients remain constant during the n channel uses. Hence
we can simplify the notations as HB(i) = HB , HE(i) = HE ,
∀i = 1, ..., n.

The average transmission energy is defined as:

E =
1

n

n∑
i=1

E
[
|X(i)|2

]
(3)

where the expectation E(·) is taken over a time slot.
When T = 0, Alice switches off and the transmitted

sequence x = 0. Bob and Eve receive pure noises as
Y (i) = NB(i) and Z(i) = NE(i), respectively.

B. Achievable rate region

Bob decodes the message from y and the average error
probability is:

Pb = Pr(M 6= M̂, T̂B = 1|T = 1) + Pr(T̂B = 0|T = 1) (4)

where M̂ is the decoded message, T̂B is Bob’s detection
whether a message is transmitted in the time block.

Eve tries to detect whether Alice transmits any message
from the observed sequence z. For every channel output,
consider two hypotheses:{

H0 : z = nE

H1 : z = d
−α/2
E HEx + nE

(5)

For simplicity, the distribution of the sequence z under the
two hypotheses are denoted as p0(z) and p1(z), respectively.
The probability of false alarm and mis-detection are given by

PFA = Pr(T̂E = 1|T = 0), PMD = Pr(T̂E = 0|T = 1),

respectively, where T̂E is Eve’s detection whether a message
is transmitted in the time block. The probability of detection
is measured by the sum of the probability of false alarm and
the probability of miss-detection

Pδ = |PFA + PMD − 1| (6)

Set the bounds of the covert communication as the tol-
erable probability of detection PD and tolerable probabil-
ity of decoding error PB . A covert communication rate
R∗(n, PB , PD|HB , HE) is considered achievable if, under
channel gains HB , HE , a transmission strategy exists such that
the probability of decoding error and detection probability are
respectively upper bounded by Pb ≤ PB and Pδ ≤ PD.

III. SECURE TRANSMISSION RATE

Suppose Eve adopts the likelihood ratio test (LRT) to infer
the binary hypothesis test in (5) with an LRT threshold F .
Then we have

L(z) =
p0(z)

p1(z)

H0

≷
H1

F (7)

With the optimal detectors, the probability of false alarm and
mis-detection is related with total variation distance between
the two distributions [11]

PFA+PMD = 1−Vt(P0,P1) = 1− 1

2
‖p0(z)−p1(z)‖1 (8)

where ‖ · ‖1 is the l1 norm. With Pinsker’s Inequality, the
relationship between the total variation distance and the infor-
mational divergence is

1

2
‖p0(z)− p1(z)‖1 ≤

√
1

2
D(P1||P0) (9)

where
D(P1||P0) =

∫
Z
p1(z) log

p1(z)

p0(z)
dz, (10)

with Z being the support of p0(z). The informational diver-
gence is also called the Kullback-Leibler (KL) divergence
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between two distributions. From the information geometry
perspective, the KL divergence is a good approximation of
the l1 norm when the difference between two distributions is
small.

By combining inequalities (6) and (9), the sufficient condi-
tion for communication with Pδ ≤ PD is then

D(P1||P0) ≤ 2P 2
D. (11)

Covert Transmission Strategy: The best covert transmission
scheme over n channel uses with a total power E is to transmit
independently with the expected power E/n in each channel
use. The total power is upper bounded by

E ≤
√
n · 2PDdαEσ2

n/|HE |2. (12)

The proof is provided in the appendix.
With this transmission strategy, the average SNR for Bob’s

receiver is:

γB =
E
n

|HB |2

dαBσ
2
n

=
2PD√
n

|HB |2

|HE |2

(
dB
dE

)−α
. (13)

The channel throughput L over n channel uses with a
tolerable probability of decoding error PB is hence [8, Eqn.
291]

L=nR=n log (1+γB)−

√
n
γB
2

γB+2

(γB+1)2
Q−1(PB)+O(log n).

(14)
where Q(x) = 1

2erfc(x/
√
2) is the Q-function, and O(·) is

the order operator.

IV. COMMUNICATION OVER UNCERTAIN WTC CHANNELS

In this section, we analyze the a more general case of fading
wiretap channels. In most scenarios, CSI of the wiretap chan-
nel is unknown to the transmitter, and it can only be guaranteed
that there is no eavesdropper within a certain distance range.
Since the CSI of the wiretap channel is unknown, we cannot
guarantee that the probability of detection must below a certain
threshold. Alternatively, for flat fading scenarios, similar to
the outage capacity, we measure the covert of communication
systems in terms of the probability of outage detection. In
this section, we assume both Alice and Bob have perfect
knowledge of the main channel CSI but no knowledge of the
wiretap channel CSI, while Eve knows the wiretap channel
CSI. Assume Alice fix her total transmission power E and
transmission block length N . In the previous section, we have
proved that sending independently in all the channel uses with
average power can reach the optimal transmission rate and the
minimum probability of detection.

Denote the SNRs for Bob and Eve as γB and γE , respec-
tively. The distribution of γB and γE is hence exponential:

p(γB) =
dαBσ

2
n

E/n
exp

(
−γBd

α
Bσ

2
n

E/n

)
, γB > 0 (15)

p(γE) =
dαEσ

2
n

E/n
exp

(
−γEd

α
Eσ

2
n

E/n

)
, γE > 0 (16)

Assume the tolerable probability of detection is PD, the outage
probability of detection is defined as:

Pout(PD) = Pr
[
D(P1||P0) ≥ 2P 2

D

]
(17)

From inequality (12), the outage probability of detection
beyond PD is obtained by:

Pout(PD) = 1−
∫ 2PD√

n

0

p(γE)dγE

= 1− exp

(
−d

α
Eσ

2
n

E/n
2PD/

√
n

)
= 1− exp

(
−d

α
Eσ

2
n

E
2PD
√
n

)
(18)

V. SIMULATIONS

In this section, we provide simulation results to show the
covert transmission throughput under different communication
settings, and the relationship with the square root law in covert
communication.

In Fig. 2, we plot the achievable throughput for communi-
cation with detection probability PD ≤ 0.1 and decoding error
rate less than PB ≤ 0.1. With a randomly generated channel
HB = 0.6282−0.8111i and HE = 0.7558−0.5724i, we study
the achievable amount of covert message transformation under
different attenuation exponent. We study the performance with
α = 1.7, α = 2, and α = 3, corresponding to the free space
fading, urban cellular scenario and urban LoS scenario. From
the simulation results, with larger α, the more information that
can be safely transmitted.
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Figure 2. Number of achievable transmission messages L = nR with various
α and dB/dE = 1/10, PD ≤ 0.1, PB ≤ 0.1.

The bounds for communication with low probability of
detection divide the number of transmission block length are
depicted in Fig. 3. From the figure, when α = 2 and 1.7, the
ratio tends to be a constant with n becomes bigger, indicating
that the square root law holds true. For α = 3, the increase
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speed of the curve keeps decreasing. Hence for n becomes
longer, it tends to reach a constant.
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Figure 3. Relationship with square root law for covert communication with
various α and dB/dE = 1/10, PD = 0.1, PB = 0.1.

VI. CONCLUSIONS

With the novel metric effective security, we study the covert
communication throughput under fading channel in this paper.
Under both detection constraint and resolvability constraints,
the channel throughput under finite block length is studied
in the paper. Both theoretical analysis and simulation results
reveal the relationship of the channel throughput with the
previous result–square root law. Furthermore, the probability
of outage detection is proposed as a metric for study the covert
communication performance with the eavesdropper channel
unknown.
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APPENDIX A
PROOF OF COVERT TRANSMISSION STRATEGY

Denote ΣX = E(xxH) as the covariance matrix of transmit
symbols x which satisfies the power constraint Tr(ΣX) ≤ E .
Since the noise is assumed to be i.i.d. circularly symmet-
rical complex Gaussian over the n channel uses, we have

p0(z) ∼ CN (0, σ2
nI) and p1(z) ∼ CN (d

−α/2
E HEx, σ2

nI). The
K-L divergence is then

D(P1||P0) (19)

=

∫
Z
p1(z) log

p1(z)

p0(z)
dz

= −H(P1)−
∫
Z
p1(z) log p0(z)dz

= −H(P1)−
∫
Z
p1(z) log

(
1

(πσ2
n)
n
exp(− 1

σ2
n

zHz)

)
dz

= −H(P1) + n log(πσ2
n) +

1

σ2
n

∫
Z
p1(z)z

Hzdz

= −H(P1) + n log(πσ2
n) +

1

σ2
n

(
|HE |2

dαE
E + nσ2

n

)
(20)

The integration in the last term of (20) is the correlation of z
under the distribution of p1(z) which equals the total received
signal power plus noise power nσ2

n.

Minimizing the divergence D(P1||P0) means to maximize
the entropy of P1. When Alice transmits the message, the
covariance of observation by Eve is

ΣZ = E[(d
−α/2
E HEx + nE)(d

−α/2
E HEx + nE)

H ]

=
|HE |2

dαE
ΣX + σ2

nI.
(21)

The maximum entropy is Gaussian distributed. Let the real
part of the diagonal elements of ΣZ be σ2

Z(i).

H(P1) = −
∫
Z
p1(z) log p1(z)dz

≤ log

(
(2π)n

√
det

1

2

[
<(ΣZ) =(ΣZ)
=(ΣZ) <(ΣZ)

])

≤ log

(
πn
∏
i

σ2
Z(i)

)

≤ log

(
πn

(∑
i σ

2
Z(i)

n

)n)
(22)

where the first inequality in (22) is obtained because Gaussian
distribution maximizes the entropy under given covariance
matrix. The second inequality in (22) is due to Hadamard
inequality [12], which says the determinant of a positive semi-
definite matrix is less than the product of its diagonal items.
The third inequality in (22) is due to the geometric inequality,
with equality achieved if and only if all the diagonal items
are identical. Hence, to obtain the minimum divergence with
a given total power constraint, the covariance of the received
matrix is a diagonal matrix with identical entries, indicating
that the best strategy is to use all the time slots independently
and sending out symbols with equal power E/n in each slot.

Under the equal power transmission strategy, (22) becomes

H(P1) = n log(π) + n log

(
|HE |2

dαE
E + nσ2

n

)
(23)
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Substituting (23) into (20), the minimum divergence is then

D(P1||P0)

≥ −n log
(
π

(
|HE |2

ndαE
E + σ2

n

))
+ n log(πσ2

n)

+n

(
1 +
|HE |2

ndαE
E
)

= −n log
(
1 +

|HE |2

ndαEσ
2
n

E
)
+ n

(
1 +
|HE |2

dαEσ
2
n

E
)

= −n

{
1+
|HE |2

ndαEσ
2
n

+
1

2

(
|HE |2

ndαEσ
2
n

)2

+ o

((
|HE |2

ndαEσ
2
n

)3
)}

+n

(
1+
|HE |2

ndαEσ
2
n

)
(24)

The approximation in (24) are obtained using Taylor ex-
pansion with the assumption that |HB |

2

ndαEσ
2
n
<< 1, and hence

the scaling item o

((
|HE |2
ndαEσ

2
n

)3)
can be omitted. Based on the

above analysis, the minimum KL divergence is given by

D(P1||P0) ≈
1

2
n

(
|HE |2

ndαEσ
2
n

E
)2

. (25)

Substituting (25) into the inequality (11), the transmission
power constraint must satisfy:

|HE |2E
dαEσ

2
n

≤ 2PD
√
n (26)

Then the result in (12) follows.
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