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Abstract—1In this work, a wireless broadcast network with
a base station (BS) sending random time-sensitive information
updates to multiple users under bandwidth constraint is con-
sidered. To measure the effect of data desynchronization when
the updates appear randomly because of external environment,
the metric Age of Synchronization (AoS) is adopted in this
work. It shows the amount of the time elapsed since freshest
information at the receiver becomes desynchronized. The AoS
minimization scheduling problem is formulated into a discrete
time Markov decision process and the optimal solution is approx-
imated through structural finite state policy iteration. An index
based heuristic scheduling policy based on restless multi-arm
bandit (RMAB) is provided to further reduce the computational
complexity. Simulation results show that the proposed index
policy achieves compatible performance with the MDP and is
close to the AoS lower bound. Our work indicates that, to obtain a
small AoS over the entire network, users with larger transmission
success probability and smaller random update probability are
more likely to be scheduled at smaller AoS.

Index Terms— Age of information, age of synchronization,
Markov decision processes, Whittle’s index.

I. INTRODUCTION
HE design of next generation mobile and wireless com-
munication networks are driven partly by the need of
mission-critical services like real-time control and the Internet
of Things (IoT). Moreover, the proliferation of mobile devices
have boosted the need to enhance the timeliness of services
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like instant chatting, mobile ads, social updates notifica-
tions, etc. The above applications require that each user pos-
sesses fresh data about the information they are interested in.

To measure data freshness from the perspective of the
receiver when update packets are generated randomly by
external actions or environments, e.g., in databases and error
alarm systems, the metric called Age of Synchronization (AoS)
is proposed [3]. By definition, AoS measures the time elapsed
since freshest information at the receiver becomes desynchro-
nized. Compared with the metric called Age of Information
(Aol) which measures the time elapsed since the freshest
information at the receiver is generated, the AoS accounts for
whether the source being tracked has actually changed, while
Aol measures the combination of the content update inter-
generation duration and content desynchronization. To better
explain their differences, consider a database synchronization
problem as an example. Suppose the file stored at the receiver
is the same as the one in remote databases, which has not been
changed or updated by external users or environment for a long
time. By definition, AoS equals 0 because files at the receiver
and at the remote database are synchronized. However, Aol
can be very large due to the long interval between two remote
database updates and thus file desynchronization status cannot
be inferred directly from Aol. On the contrary, AoS is a more
appropriate metric in studying database desynchronization.
Similar scenarios can be found in monitoring system [4] and
web crawling problems [5]. Due to the aforementioned differ-
ences between Aol and AoS, scheduling strategies that aim at
minimizing Aol may not guarantee a good AoS performance.
Thus, it is of importance to study scheduling strategies to
obtain a good AoS performance.

Data freshness optimization has received lots of attention
in communication system design. The problem of minimizing
Aol have been investigated in coding [6]—[8], physical layer
design [9], [10] and network optimization [11]-[20]. When
the source keeps changing all the time and the update packets
carrying those updates can be generated at will, centralized
scheduling algorithm to optimize Aol performance in networks
with interference constraint is first studied in [11]. Theoretic
lower bound for Aol performance is derived and various
scheduling policies are proposed to approach the bound [12].
When the generation of update packets cannot be controlled at
will and appear in a stochastic manner, theoretic performance
and scheduling algorithms have been studied in [17]-[21].
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However, scheduling policies provided in [17]-[20] are based
on error free transmission, while in practical wireless com-
munication scenarios, packet loss may happen due to channel
fading and decoding error. Moreover, those researches all focus
on minimizing Aol. The metric AoS, which measures the
content desynchronization alone, is a more appropriate metric
to measure the desynchronization status of caches, databases
and error alarm systems [22], [23]. Although AoS has been
used to measure the staleness of replicated databases and
the its performance has been studied under several updating
strategies in [22], [23], the effect of packet loss has not been
taken into account. Besides, update strategies in the above
works are unaware of the database changes, i.e., scheduling
decision may take place even if there is no change in the
database content.

To fill this gap, we aim at designing scheduling policies to
minimize the expected AoS of an unreliable wireless broadcast
network, when the generation of update packets cannot be
controlled at will and arrives stochastically because of exter-
nal environment. Unlike previous work that consider update
randomness at the transmitter but no transmission randomness
at the receiver [17]-[19], we consider double randomness at
both the transmitter and the receiver. Our contributions are
summarized as follows:

o We derive the theoretic lower bound of the AoS per-
formance in error-prone wireless networks when the
update of each source appears following i.i.d Bernoulli
distribution.

e The AoS scheduling problem is reformulated into a
Markov decision process (MDP). We exploit the switch-
ing structure of the optimum policy by analyzing the
monotonic characteristic and submodularity of the value
function. The optimum solution is approximated through
finite state policy iteration.

o To overcome the computational complexity of the MDP
solution, we propose a heuristic index based algorithm
by reformulating the scheduling problem into restless
multi-arm bandit (RMAB). We prove that each bandit
is indexable and derive the closed form expression of
the Whittle’s index. Simulation results show that the
Whittle’s index policy can achieve AoS performance
close to the MDP solution and the AoS lower bound.

The remainder of this paper is organized as follows. The net-
work model and the two metrics, Aol and AoS are introduced
and compared in Section II, where the overall scheduling
problem is formulated and AoS lower bound is derived.
In Section III, we reformulate the problem into a Markov
decision process and propose a structural policy iteration to
approximate the MDP solution. In Section IV, we propose
an index based algorithm based on restless multi-arm bandit.
Simulations are provided in Section V and Section VI draws
the conclusion.

Notations: Vectors are written in boldface letters. The prob-
ability of event A conditioned on B is denoted as Pr(.A|B),
the expectation with regard to random variable X conditioned
on random variable Y is denoted as Ex[f(X)|Y]. Vector e;
denotes vector with the ¢-th element being 1 and the remaining
elements take 0.
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II. SYSTEM OVERVIEW

In this section, we introduce the system model, formulate
the overall scheduling problem and derive the lower bound of
the scheduling problem.

A. Network Model

We consider a wireless broadcast network with a base sta-
tion (BS) holding update information of /N randomly changing
sources and broadcasting them to /N users. Consider a discrete
time scenario and we use t € {1,---,T} to denote the index
of the current slot, the update of source n appears indepen-
dently and identically with probability \,, € (0, 1] in each time
slot.! Let the indicator function A, () € {0, 1} denote whether
an update of source n happens during slot ¢. If A, () = 1, then
an update occurs during slot ¢, and then it can be broadcasted
by the BS at the beginning of slot (¢ + 1). We assume each
user is interested in the information from the corresponding
source, i.e., user n is only interested information about n,
ne{l,--- N}

At the beginning of each slot, the BS schedules to send
information updates over error-prone wireless links. Since each
user is only interested in the freshest information about the
corresponding source, we assume the BS only keeps the latest
update of each source, i.e., new update packets will replace
the older update packets for a typical source. Here we use the
indicator function u,, (t) € {0, 1} to denote scheduling actions.
If user n is not scheduled then wu,(t) = 0. If u,(t) = 1,
the newest update from source n is transmitted and user n
will successfully receive the packet by the end of slot ¢ if the
transmission succeeds. Assume that the packet erasure is a
memoryless Bernoulli process and user n has a fixed channel
characterized by the Bernoulli packet success probability p,,.
An error-free acknowledgment sent from user n will reach the
BS instantaneously if the transmission succeeds. In each slot,
the amount of data to be broadcasted must be smaller than the
channel capacity and the available bandwidth (otherwise the
transmission will all fail). Similar to [12], [13], [19], in this
work, we assume the BS attempts to broadcast one update in
each time slot:

N
Y ualt) < 1. e))
n=1

B. Age of Information and Age of Synchronization

To introduce the concept of Aol and AoS, we consider a
single source discrete time scenario as an example. First we
review the definition of them and then we talk about how
AoS evolves depending on scheduling decision {u,(¢)} and
update randomness {A,,(t)}. Suppose the i" update packet of
the source is generated during slot g;. Let r; be the receiving
time-stamp of the corresponding packet. If the packet is not
received by the user, then denote r; = +o0.

'When A, = 1, new update packets of source n appear in every slot and
thus the source keeps changing. AoS and Aol are the same metric in this
scenario. In following analysis, we will compare our derivations with results
of Aol in this special case to show the relationship of the two metrics.
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Fig. 1. On the top, sample sequences representing time-stamps of update
arrivals (upward magenta arrows), update sending decisions (green circles)
and update received time-stamps (downward blue arrows). On the bottom,
sample paths of Aol (blue) and AoS (red).

The Aol measures the time elapsed since the latest update
at the receiver is generated [2]. Let ¢(¢) = max;en+{i|r; < t}
be the index of the latest update at the beginning of slot ¢ at
the receiver, which is generated in g ;). By definition, the Aol
h(t) at the beginning of slot ¢ can be computed by:

h(t) =1t = gq)- )

The Aol evolution for stochastic arrivals transmitted through
an unreliable communication channel can be found in [21].

The AoS describes how long the information at the receiver
has become desynchronized compared with the source [3].
Notice that ¢(¢)+ 1 is the index of earliest source update since
the generation time-stamp of the freshest information stored
at the receiver at the beginning of slot ¢. Let s(¢) be the AoS
at the beginning of slot ¢, by definition:

s(t) = (t = gqy+1) " 3)

where function (-)* = max{0,-}. According Eq. (3), if no
new update arrives after the generation time-stamp of the
latest refresh of the user, ie., ggu)41 > ¢, then s(t) = 0.
The sample paths of Aol and AoS of a source are depicted
in Fig. 1. From the figure, the AoS remains zero until a new
fresh update arrives and increases linearly if the content stored
at the receiver becomes desynchronized with the source, while
Aol keeps increasing as long as no update has been received.
The difference between Aol and AoS is the reference object.
The AoS measures data freshness compared to the content
of the random update source and accounts for the whether
the process being tracked has actually changed, while Aol
measures the time difference between now and the generation
time-stamp of receiver’s current content.

Now we return to the multiple-user scenario and introduce
the evolution of AoS. Let s, (t) be the AoS of user n at the
beginning of each slot ¢. The analysis is divided into two
categories based on desynchronization status:

o First let us consider that the information at user n is
synchronized with source n at the beginning of slot ¢,
ie., sp(t) = 0, then s,(t + 1) depends on whether an
update occurs during slot ¢.

* When there is no update, i.e., A,,(¢t) = 0, then s, (t+
1) = 0, indicating that user n is still synchronized
with source n at the beginning of next slot.
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* When A,(t) = 1, suggesting an update of source
n occurs in slot ¢, then information of user n will
become desynchronized at the beginning of next slot,
ie, sp(t+1)=1.

o If 5,(t) # 0, then user n is desynchronized with source
n at the beginning of slot ¢.

+ If w,(t) = 1 and the transmission succeeds, then the
latest information of source n by the end of slot ¢ —1
will be received by the end of slot ¢. Then in this
case:

* If A,(t) = 0, there is no update during slot ¢,
thus the received information will be synchronized
with the source at the beginning of next slot,
ie., sp(t+1)=0.

* If A,(t) = 1, the received information will be
out-of-date immediately at the beginning of next
slot, then s, (t+1) = 1.

+ If the update is not transmitted u,(t) = 0 or the
transmission fails, the update packet will not be
received by user n, then AoS increases linearly,
ie, sp(t+1)=s,(t)+ 1.

Based on the above analysis, the dynamics of AoS for user n
is:

0, sn(t) = 0,A,(t) = 0;

1, sn(t) = 0,A,(t) = 1;
sn(t+1) =<0, An(t) = 0,un(t) = 1, succeeds;

1, An(t) = 1,u,(t) = 1, succeeds;

sn(t) + 1, otherwise.
(4)

C. Problem Formulation

The expected average AoS of all users following policy 7
over a consecutive of 7" slots can be computed as follows:

A
=33 sls(0)]

t=1 n=1
where the vector s(t) = [s1(t),s2(t), -+ ,sn(t)]T € NV
denotes the AoS of all users at the beginning of slot ¢. In this
work, we assume that all the sources have been synchronized
initially, i.e., s(0) = 0 and omit s(0).

Let TIx4 denote the class of non-anticipated policies,
i.e., scheduling decisions {uy,(t)} in slot ¢ are made based on
channel statistics {p,}, the past and current AoS of all users
{$n(7)}r<¢. No information about the future can be used.
We aim at designing a non-anticipated scheduling strategy
m € IIya such that the above time-average expected AoS
is minimized when T — oo. The problem considered in this
paper is organized as follows:

Jp(m) =E,

P argﬁglr%gATlglgoJT( ), (5a)
, IN
where Jr (1) = N—ZX:lsn(t)] , (5b)
N
sUEr | Y un(t)| <1, Wt (5¢)
n=1
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D. Lower Bound of AoS

In this part, a lower bound to the expected average AoS
performance to the above optimization problem is derived.
Sample path argument is used here to characterize the AoS
evolution of each user. Then, we establish the expected average
AoS over the entire network when the number of time slots
T — oo. By using Fatou’s lemma, the lower bound is then
established.

Theorem 1: For a given network setup, the average AoS
over the entire network is lower bounded by:

1\, 2+1 11—\,
An 2 \ v A ’

2
maX{l/\/<1)\i‘n) _ (1;;\"”) + Q}LHN’)\n}’

and p* is the coefficient that keeps Eg 1 Z" =1

Proof Sketch: The lower bound is obtained by solving AoS
minimization problem under a relaxed bandwidth constraint,
i.e., multiple users can be scheduled at the same time but the
time average users scheduled in each slot is still smaller than
1. The hard bandwidth constraint in every slot indicates that
the derived AoS lower bound can be loose. The bound is used
to evaluate the performance of our proposed algorithms. The
details of the derivations will be provided in Appendix A.

AOSLB

Yooh
z:: ’Yﬂ |§

where ) =

III. MARKOV DECISION PROCESS

In this section, we design a scheduling strategy based on
Markov decision process (MDP) techniques. The optimization
problem Eq. (5a-5c) can be formulated into an MDP problem
with elements explained as follows:

o State space: The state at time slot ¢ is defined to be the
AoS of all the users over the entire network s(¢). The
state space is countable but infinite because of possible
transmission failures.

o Action space: We define the action a(t) at time ¢t
to be the index of the selected user. The correspond-
ing scheduling decision can be computed by u,(t) =
L(n=a(t)), V1, where 1.y is the indicator function. Denote
a(t) = 0 if the BS chooses to be idle. The action space
{0,1,2,---, N} is hence countable and finite.

 Transition probability: Let Pr(s’[s,a) be the transition
probability from state s(t) = s = [s1, 82, -+ ,sn]T to
state s(t + 1) = s’ = [s},sh,--+,s\]T at the next

slot by taking action a at slot ¢. Since the probability
of new update packet arrival and channel states are
independent among the users, the transition probability
can be decomposed into:

N

H Pr(s)|sn, a),

n=1

Pr(s’|s,a) = (7

where Pr(s/,|sp,a) denotes the one-step transition prob-
ability of user n given action a and has the following
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expression according to Eq. (4):

Pr(sy, |50, a)
1, s’n:sn—i—l,sn#o,a;«én;

1—py,, st =8n+ 1,5, #0,a=n;
AnDn, st =1,8, #0,a =n;
= ¢ (1 =X)pn, s, =0,8,#0,a=n;
A sl =1,8, =0,Va;
1— Ay, s, =0,s, =0,Va;
0, otherwise.

o One-step cost: Let C'(s(t), a(t)) be the one-step cost at
state s(t) given action a(t), which is the average AoS
growth of the entire network at time ¢:

1 N
= N ; Sn(t)

The solution 7* that minimizes the average AoS in Eq. (5b)
can be found by solving the MDP. Denote J,(s,n) be the
a-discounted cost following policy 7 starting from state s, i.e.,

T
> T O(s(1),

In this section, we approximate 7* by solving the a-discounted
cost problem when o — 1. Define 7, be the optimum policy
that minimizes the a-discounted cost starting from any state s
ans satisfies the bandwidth constraint, i.e.,

C(s(t), alt

where Ju(s,7) = lim E;

T—o0

a(t))] , (®)

mh = arg min Ju(s,m), Vs, (9a)
mwellna
N

s.t. By Zun(t)] <1, Wi (9b)
n=1

Policy 77, is obtained a modified policy iteration that utilizes
its structure. To analyze the structure of 7%, let us first provide
the formal definition of the stationary deterministic policies:

Definition 1: Let 1lgp denote the class of stationary deter-
ministic policies. Given state s(t) = s, a stationary deter-
ministic policy msp € Ilgp selects action a(t) = f(s), where
Sunction f(-) : s — {0,--- N} is a deterministic mapping
from state space to action space.

According to [24], ©} can be a stationary deterministic
policy and denote 7, (s) be the action it takes in state s. Then
denote V,(s) is the a-discounted cost following policy 7
starting from state s, i.e.,

lz a1 C(s

Va(s)= lim Eq«

T—o0

,a(t ))] :I%rin Ja(s, 7).
(10)

Lemma 1: The a-discounted value function satisfy the
following Bellman equation:

Va(s) = min{C(s,a) +a Z Va(s))Pr(s']s,a)}.  (11)
Proof Sketch: The main idea is to show there is a weight
function w(s) : S — [1, 00) such that the w-norm of the value
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function ||V, (s)|| = supges "(S)) is bounded. The proof is

similar to [17] and is provided in our online report due to
page limitations.

Based on the Bellman equation, we can apply a policy
iteration to obtain the value function V,,(s). The computational
complexity of which can be reduced by utilizing the structure
of the optimum policy. Next, we will first exploit the switching
structure of the optimal policy 77, in Section III-A, and then
propose a structural finite state policy iteration to approximate
the optimal policy in Section III-B.

A. Characterization of the Optimal Structure

First we study the structure of the optimum policy 7, such
that minimizes the discounted cost of MDP. We first present
two lemmas, the proof of Lemma 3 them can be found in
appendices.

Lemma 2: For fixed o and any starting state s, the dis-
counted value function V,(s + zey) is a non-decreasing
function of z, regardless of n.

Lemma 3: For any fixed «, the discounted value function
possess a submodularity characteristic. That is, for state s and
Vi 75.],2:1 Z 0,0 S Zj S S50

Va(S — zjej)
Z Va(S + ziei) —

Va(s + zie; — zje;) —

Va(s). (12)

Based on the two lemmas, we will obtain the following
theorem on the structure of 7;:

Theorem 2: The optimum policy m}, possesses a switching
structure. That is, if for state s policy 7}, chooses action n, then
policy % chooses action n at state s + zep,Vz € N, where
e,, is the unit vector with the n'" component being 1 and the
remaining elements being 0.

Proof: The proof is based on N = 2 for notation
simplicity and can be generalized easily to N > 2. Suppose
it is optimal to schedule user 1 at state s = [s1, s2] with dis-
count factor a, then we have Ey, o [Vi([s7, s5])[s1,52], 1] <
Eqyr o [Va([s1,85])|[51, 52, 2]. Then let us compute and com-
pare the expected value function by taking action ¢ = 1 and
a = 2 at state [s1 + z, s2],

By s [Va([51, 55))|[s1 + 2, 52], 1]

— By g [Val[5}, s4))l[s1 + 2, 52], 2]
= p1((1 = )Va([0, 52 + 1]) + M Va([1, 52 + 1]))
+(1=p1)Va([s1 + 2+ 1,82+ 1))
—p2((1=A) Vo ([s1+2+1,0)) + X Vi ([s1+2+1,1]))
—(L=p2)Vallsi +2+ 1,52 +1])
= p1((1 = A)Va([0, 2 +1]) + A1 Va([L, s2 + 1]))
+ (1 =p)Valls1 + 1,52 +1])
—(1=p1)Va([s1+ 1,82+ 1))
+ (1 —p)Va(lsi +z+ 1,52+ 1])
= pa((1 = D) Valls1+2+1, 0+ AaVa (51 +2+1,1])
—(I=p2)Vallsi +2+1,52+1])
(a)
P2((1=X2)Va([s1+1,0))+ A Va ([s1+1,1]))
(1 pg)Va([81+1 82+1])
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+ (1=p1)(Va([s1+2+1, s24+1]) = Va([s1+1, s2+1]))
—p2((1=A) Vo ([s1+2+1,0)) + X Vi ([s1+2+1,1]))
— (L =p2)Vaul([s1+ 2z + 1,82+ 1])

= p2(1 = A2)(Va([s1+1,0]) = Va([s1+2+1,0])
—Vo(ls1+ 1,82+ 1)) + Vo([s1 + 2+ 1,82 + 1]))
+p2ra(Va([s1 +1,1]) = Vo([s1 + 2+ 1,1))

—Valls1 + 1,82 + 1)) + Vo([s1 + 2+ 1,82 + 1]))
(b)
Va([s1+1,52+1])) <0,

13)

- (Va([s1+2+1,s2+1])—

where inequality (a) is obtained because it is optimum to
broadcast source 1 at state [s1, s2], which implies:

Eq; s [Va([s1, 52))[[51, 52], 1] < By oy [Vaa([51, 85])[s1, 521, 2],

and (b) is obtained because of submodularity and monotonic.
The above inequality Eq. (13) implies, the optimum choice
at state [s; + z,so] is selecting source 1, which is the
optimum action at state [s1,s2]. The switching structure is
hence verified. u

B. Relative Policy Iteration Through Finite-State
Approximation

MDP problems with countable finite states can be solved by
policy iteration or value iteration. To deal with the infinite state
space in our problem, we approximate the whole countable
space, i.e., the AoS for each source, by setting an upper
bound of AoS S)'** for each of them. This approximation
is reasonable since the probability of consecutive packet-
loss vanishes exponentially with the number of consecutive
transmission slots. By letting S"™* goes to infinity for all n,
the optimal structure will converge to the original problem.

Denote ™ (t) be the truncated AoS of source n when
Spax = m, ie., xglm)(t) = min{s,(t),m}. With such
approximation, by choosing different upper bound m, we can
obtain a class of approximate MDP problems, where each
problem differs from the primal problems with:

« State space: We substitute the state s(t) by the truncated

A0S x(™) (1) = [2{") (1), 25" (1), - 2 (1))

o Transition probabilities: The transition probability
changes in accordance with the action space, let
Pr(x(m)/|x(m) ,a) be the transition probability from state
x(t) =x") to x(t+1) = x(™" with the dynamic being

2

Pr(x(™ |x(m

,a). (14)

It should be noted that Pr(a;, (m)’ |x(m) a) is the same as
Pr(s),|sn, a) except:

(m)" _ (m) _ .
Pr(z0™ 2™ q) = 1, T = =m,a # n;
1—pn, a:%m) = a:%m) =m,a=n.

(15)
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Algorithm 1 Relative Policy Iteration Based on Switching
Structure

1: initialization: for each state x, assign action 7(?)(x) =
arg max,, x,, the initial value of VA% (x) = N ..
2: repeat
3 D (x) 0, Vx.
4: for x € state space X' and (%) (x) = 0 do
5: Policy selection w**1)(x) «— a* where a* =
arg minge4{C/(x, a) + aFx [VA¥ ()]s, a]}.

6: Policy evaluation A (x) <« Cx,a*) +
oy [VA¥ (x)|x, a*]

7. Assign 7D (x + ze,) < a* and Va™(x + ze,) —
C(x,a*) + aEx [Va(k) (x')|x + zeq, a*]

8: end for

9: Vogkﬂ)(x) — Va™(x) — Va™(0), for all x.

10: k—k+1

11: until 7% (x) = 7k~ (x), for all x.

Then for a given upper bound m, we can obtain an optimal
deterministic policy by relative policy iteration. We choose the
initial policy 7(°)(x) = arg, x,, i.., the greedy policy that
schedules user with the largest AoS. Then given policy 7(¥) (x)
and value function Vék) (x), policy w(’““)(x) and the value
function VOEkH)(x) in the (k + 1)™ iteration can be obtained
through iteration. Considering the switching structure, once
n(F+1(x) = a is obtained, it can be concluded then for
any z > 0, 7" (x + ze,) = a. The policy 7(¥(x)
and value V" (x) will finally converge when k increases.
Algorithm flowchart is provided below.

After the iteration we can then obtain a stationary deter-
ministic policy 7. The MDP scheduling policy is obtained as
follows: at each slot with state s(t), compute the corresponding
virtual age x(™(t) and choose the corresponding action
a(t) = n(x(™)(t)).

Notice that there are a total XmaxN states, thus the com-
putational complexity O(XmaxN ) grows exponentially, which

makes the optimum policy impossible to obtain for large N.

IV. INDEX-BASED HEURISTIC

MDP solution is computationally demanding for a large
number of access users known as the curse of dimension.
To reduce computational complexity, we propose a simple
index-based heuristic policy based on restless multi-arm bandit
(RMAB) [25].

The N users can be viewed as arms, the state of user n at
the beginning of slot ¢ is the corresponding AoS s, (t). For
the sake of simplicity, we define the bandit n to be active if
source n is broadcasted, and the bandit is passive if source n is
not. In each slot, the BS activates one arm and sends update
information, while the remaining arms remain passive. The
AoS for each user n depends only on its past AoS s, (t — 1)
and the scheduling decision u,,(t —1). Hence the AoS evolves
as restless bandit based on current action and its current AoS.

To solve RMAB problem, a low complexity heuristic index
policy is proposed by Whittle [26], it can approach asymptotic
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optimal performance compared with the MDP solution under
certain scenarios. In this section, we first prove the indexability
of the problem. Then, we obtain the closed form solution of
Whittle’s index and provide the scheduling policy.

A. Decoupled Sub-Problem

To adopt the Whittle’s index, let us first relax the trans-
mission constraints in each time slot into a time-average
transmission constraint,

A
P33 )] <1
t=1 n=1
Let W > 0 be the Lagrange multiplier and place the relaxed

bandwidth constraint into the objective function, we have the
following minimization problem:

% XT: i (sn(t)—i—Wun(t)—%)] .

t=1n=1
(16)

Er

minimize lim [E;
T—o0

For fixed W, the above relaxed optimization problem can
be decoupled into /N subproblems and solved separately. Thus,
we omit the subscript n of each user henceforth. Given W,
the goal of each decoupled optimization problem is to derive
an optimum activation strategy uys such that the following
total cost can be minimized:

.1
mw = a‘rgTrEHNA Tlgl/loo ?EM

Z(s(t) + Wu(t))] .37

The non-negative multiplier W > 0 can be viewed as an extra
cost of being active and the optimum strategy should achieve a
balance between activation cost and the cost incurred by AoS.

Each of the N subproblems can be formulated into an MDP,
each element is explained as follows:

o State space: The state at time ¢ is the current AoS of the
corresponding user s(¢) € N, which is countable infinite
because of possible transmission failures.

o Action space: There are two possible actions at each
time slot, either choose the bandit to send updates a(t) =
1 or remain idle a(t) = 0. It should be noted here that
the action a(t) here is different to the scheduling action
u(t), which has strict bandwidth constraint.

o Transition probability: The state evolves with the action
following Eq. (4). Let Pr(s’|s, a) be the transition prob-
ability from state s(t) = s to s(t + 1) = s’ by taking
action a(t) = a at slot ¢, then:

A, s=1,s=0,a=0,1;
11—\, s =0,s=0,a=0,1;
DA, s=1,s#0,a=1;

Pr(s'|s,a) = < p(1 = N), s =0,5#0,a=1;
1—p, s=s+1,s#0,a=1;
1, s=s+1,s#0,a=0;
0, otherwise.

(18)

Authorized licensed use limited to: Yale University. Downloaded on January 18,2023 at 02:03:49 UTC from IEEE Xplore. Restrictions apply.



TANG et al.: SCHEDULING TO MINIMIZE AoS IN WIRELESS BROADCAST NETWORKS WITH RANDOM UPDATES

¢ One-step cost: For fixed W, the one step cost of state
s(t) by taking action a(t) is defined as total cost incre-
ment at slot ¢, which consists of both the current AoS
and the extra cost of being active:

C(s(t),a(t)) = s(t) + Wa(t).

According to [24], a stationary deterministic policy exists
to minimize the average cost over infinite horizon. Next we
will study the structure of such policy pw : s(t) — a(t) to
prove indexablility of the bandit.

19)

B. Proof of Indexability

First, let us provide the formal definition of indexablility.

Definition 2: According to [25], let Qy be the set of states
where the optimum strategy w takes a passive action. A ban-
dit is indexable if the passive set Qyy increases monotonically
with multiplier W, i.e., Qw C Quw,YW > W'

The proof for indexability can be divided into two parts.
First we will show that the optimum policy to the above MDP
possesses a threshold structure. Next, we derive the optimum
threshold for fixed Lagrange multiplier W and proves that it
is monotonic increasing.

The threshold structure of the optimum stationary determin-
istic policy is obtained by investigating policies to minimize
the a-discounted cost over infinite horizon. For fixed Lagrange
multiplier W, denote J, w (s, i) to be the a-discounted over
infinite horizon starting from initial state s(1) = s:

T
> aTO(s(), a(t))] .

Ja,W(Sa /j‘) = Th—Igo SupEu
t=1

Let pio,w = argmingemy, Jo,w(s, 1) be the opti-
mum policy that minimizes the a-discounted cost and let
Vaw(s) = min, Jo(s, 1) = Ja,w(s, pia,w). The value
function V, (s) satisfies the following Bellman equation:

Va.w (s) = {lrleig{C’(s, a) + « Z Vo,w (s")Pr(s'[s,a)}.(20)

Lemma 4: For W > 0, the value function Vy, w (-) increases
monotonically.

The proof of Lemma 4 is provided in the appendix. Recall
that pyy is the optimum policy that minimizes the average cost
Eq. (52). Lemma 4 implies the following theorem about gy :

Theorem 3: The optimal policy jw to minimize the average
cost over infinite horizon (17) has a threshold structure. Let
wuw (8) be the action policy pyw takes when the AoS equals s.
If at state s, it is optimal to keep the bandit idle, then for all
s’ < s it is optimal to keep the bandit idle, i.e., uyw (s") =0,
Vs’ < s; otherwise, if it is optimal to activate the bandit at
state s, then for states s+ 1,5+ 2,---, the optimal strategy
ww is to activate the bandit, i.e., uy (s') =1,Vs' > s.

Proof: We will prove by investigating the optimal policy
o, w that minimizes the a-discounted cost. The decision a(t)
is chosen according to the Bellman equation (20), the condi-
tion for bandit to be active is:

W+ Oép()\Va,W(l) + (1 - )‘)VQ,W(O)) < apVoz,W(S + 1)'
(21)
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Suppose at state s, the above inequality is satisfied and the
optimum strategy i, to minimize the a-discounted cost is to
choose the bandit to be active, i.e., a = 1. According to the
monotonic characteristic, for all states s’ satisfy s’ > s,

W+ ap(AVa,w (1) + (1 = A)Va,w (0))
< apVa,w(s) < apVa,w(s').

Hence for state s’ > s, the optimum policy pq w will
choose the bandit to be active, i.e., pow(s’) = 1,Vs" > s.
By taking the conversion of inequality, in the same way,
we can obtain that the if the optimum policy /i, 1S to remain
passive at state s, then for all states satisfy s’ < s, the optimum
policy to minimize «-discounted cost is to remain passive. The
threshold policy holds for all « € (0, 1). By taking o — 1, this
provides insight that the optimum policy gy has a threshold
structure. |

The indexability is then proved by showing the activation
threshold increases with W. To compute the activation thresh-
old, first we compute the average cost for fixed Lagrange cost
is threshold policy 7 is employed, the proof can be found in
Appendix D

Corollary 1: Denote F(1,W) to be the average cost for
fixed W if threshold policy T is employed, i.e., the bandit will
be active for state s > T and be passive for state s < 1. Then,

)

(1)
Fir,w) = e 4 S

1 (1)
S -1+ 17(7 + W),

(22)

where gé” denotes the steady state distribution if bandit is in
state s by applying threshold policy T and typically,

1
(T)l/<—+7+——1>

Next, we derive the optimum activating threshold 7,,. (W)
for given W by examining the value of F(7,W). The opti-
mum value should satisfy F(7ope + 1L, W) > F(7opt, W)
and F(7opr — 1, W) > F(7opt, W). The following corollary
provides the closed form expression of the threshold, further
derivations are provided in Appendix E:

Corollary 2: For given Lagrange multiplier W, the optimum
activating threshold can be computed as follows:

5 1 1\> _ W 1-A1- 1-p
+/{s---= +2(—— + .
\/(2 p A) (p Ao p :
(23)

Notice that the scheduling threshold 7,,; is an increasing
function of W, suggesting that the passive set increases
monotonically with W. Especially when W = 0 the threshold

2For the special case A = 1, the optimum threshold then becomes Topt =

3_1 3 _ 1 w 1-p| _ (3 _1 1_1 w
L§_* ;JF_\/(Q - ‘;)2 T2y +257F] = 5 -5+ (3 — )2 +275 ]
This special case is equivalent to the optimum threshold of Aol problem,
[12, Eq. (54)] with T'=1 and oo = 1.
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6 AoS over the entire network as a function of total refreshement rate

— - Arr. Aware
«=+@+++ Aol min
—<}= Whittle’s index

MDP
K

55F

Expected Average AoS

‘
05 1 1.5 2 25
Atutnl

Fig. 2. Simulation results of expected AoS for a three user broadcasting
network with A = [0.3,0.4, 0.3]A\tptq; and p = [0.2,0.55,0.9].

equals 0, which suggests the passive set is (). Thus the
indexability of the bandit is proved.

C. Derivation of the Whittle’s Index

The Whittle’s index I(s) measures how rewarding it is
if the bandit at state s is activated. By definition, it is
the extra cost that makes action ¢ = 1 and @ = 0 for
states s equally desirable [26]. Denote ¢(7) to be the average
activation probability over infinite horizon if threshold policy
7 is applied. According to the threshold structure, ¢(7) equals
the time proportion spent on updating the bandit, which equals
the total probability that the bandit is in state sy7 and can be
computed by:

oo oo ()
o) =367 =3 671 -p T =2

According to [25, Eq. 6.11], the Whittle’s index can be
computed as follows:
F(s+1,0)—F(s,0)

1) ===t +1)

(24)

p(F(s+1,0) - F(s,0)) 5
ggs) . £§s+1)

(25)

D. Index-Based Scheduling Algorithm

We will provide a low-complexity scheduling algorithm in
this part based on the derived index. At the beginning of each
time slot, the BS observes current AoS of each source s,,(t)
and computes the Whittle’s index for each user I, (s, ()).
Then, broadcast the corresponding message of user n with
the highest I,,(s,(t)), with ties broke arbitrarily. Since the

3When A = 1, we have £{*) = 4 and F(s +1,0) — F(5,0) =
D
(22 L — 2 2) (€ —6l) + (s + 1)l The Whitde's
. . L . _ s(s—1) 1 1
index according to our derivations is I(s) = —p (T + el + %) +

p(s + %)(s + % -1) = B+ 2;%), which is exactly equivalent to
[12, Eq. (56)] with 7" =1 and o = 1.
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AoS over the entire network as a function of number of users
60 — T T T T T T T

—ode-+ Arr. Aware

...@....AOI min ‘4>
— < Whittle’s index
Lower Bound

50 -

Expected average AoS over entire network
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Fig. 3. Simulation results of expected AoS as the number of users, the total
packet arrival rate over the entire network A;y+q; = 2 and the packet arrival
probability for each user is A\, = %)\toml, pn =n/N.

index is computed separately for each user, the computational
complexity is O(N) and can almost be neglected.

The scheduling policy based on Whittle’s index can be
easily generated to constraint where no more than M users
can be scheduled in each time slot. That is, after computing
the Whittle’s index of each user at time slot ¢, the BS
selects M users with the largest indexes and broadcast the
corresponding update packet. Moreover, according to [26],
the Whittle’s index policy is shown to be asymptotic optimum
in most scenarios. That is, let the number of users N — oo
while M /N keeps a constant, the performance gap between
Whittle’s index policy and the optimum policy vanishes.

V. NUMERICAL SIMULATIONS

In this section, the performance of the proposed scheduling
strategies are evaluated in terms of the expected average
AoS over the entire network. We compare four scheduling
strategies: 1) The greedy arrival aware policy that schedules
to transmit undelivered packet to user with the largest AoS.
2) Aol minimization policy proposed in [21]. 3) The Markov
decision process in Section III. 4) The Whittle’s index policy
in Section IV. Define the total Igacket arriving rate over the
entire network to be Ajorq1 = anl An. The expected average
AoS is computed by taking the average AoS evolution over
T time slots such that each user is selected for transmission
larger than a consecutive of 10* slots.

In Fig. 2, we consider a three user broadcast network with
arriving rate A\ = [0.3, 0.4, 0.3] A\zota; and success transmission
probability p = [0.2,0.55,0.9]. The threshold m for comput-
ing the truncated MDP solution is set to be m = 20. Fig. 3
study the AoS performance for networks with more users.
The parameter \:o1q; = 2, the packet arrival probability for
each user is A\, = %)\toml and p, = . Due to the

computational complexity caused by the curse of dimension,
we display the derived lower bound instead of the MDP policy
in Fig. 3. In Fig. 2, the proposed index based scheduling
algorithm achieves compatible performance with the MDP
policy. In Fig. 3, the performance of the proposed index policy
is close to the theoretic lower bound. When the number of
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Fig. 4. Simulations of the time proportions spent on scheduling each user with different AoS, i.e., the number of scheduling times divide the total number of
slots T" for a network with N = 10 users, with A,, = 0.5n/N. The transmission success probability is p, = 0.9, Vn on the left and p,, = 0.5 on the right.
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Simulations of the time proportions spent on scheduling each user with different AoS, i.e., the number of scheduling times divide the total number

of slots T for a network with N = 10 users, with p, = n/N. The random update probability in each slot is A, = 0.2Vn on the left and A\, = 0.5

on the right.

users N increases, following arrival aware strategy is far from
the proposed index policy.

From our analysis in Section II, Aol and AoS are equivalent
when A = 1. In Fig. 2, when A\;ptq; — 2.4, the arrival rate
A, for each user is close to 1, indicating that update packets
will arrive in nearly every time slot. Aol minimization policy
tends to show similar performance as the AoS minimization
policies. When the update packet arrival rate A, is much
less than 1, or the number of users in networks increases,
Aol minimization policy will lead to significantly higher AoS
performance compared with the proposed index policy and
may even be worse than the greedy arrival aware policy. This
phenomenon verifies our analysis that AoS and Aol are metrics
with different physical meanings, a good Aol performance
cannot guarantee a good AoS performance.

To understand the design insight of how to minimize the
average AoS over the entire network, we plot the time pro-
portion spent on scheduling each user under different AoS,
i.e., the number of scheduling times divide the total number
of slots 7. In Fig. 4, we study a network with N = 10
users, with packet arrival rate A,, = 0.5n/N for each user.
The transmission success probability is p, = 0.9 on the left

and p,, = 0.5 on the right for all n. In Fig. 5 we set p,, = n/N
for each user, and the update arrival probability in each slot
is A, = 0.2 on the left and A\, = 0.5 on the right. From
simulations, users with smaller update arrival probability A,
and larger packet transmission success probability are more
likely to be updated with smaller AoS.

VI. CONCLUSION

In this paper, we treated a broadcast network with a BS
sending random updates to interested users over unreliable
wireless channels. We measure data freshness by Age of
Synchronization. We propose two scheduling algorithms based
on Markov decision process (MDP) and the restless multi-arm
bandit (RMAB) to minimize AoS. Simulation results show that
the proposed index policy achieves comparable performance
with the MDP and approaches the theoretic lower bound.
Moreover, our work verifies that AoS and Aol are different
concepts, policy mismatch will lead to bad AoS performances.
To guarantee a good AoS performance, scheduling policies
should ensure that users with smaller random update proba-

bilities and larger success probabilities are updated at smaller
AoS.

Authorized licensed use limited to: Yale University. Downloaded on January 18,2023 at 02:03:49 UTC from IEEE Xplore. Restrictions apply.



4032

The wireless broadcast model is a simplified one in our
work. In the future, we will study scheduling policies to min-
imize AoS in broadcast network with time-varying channels
like [27]. Scheduling and interference alignment co-design in a
network with multiple base stations will also be an interesting
problem.

APPENDIX A
PROOF OF THEOREM 1

Proof: Let m € Ilna be a feasible scheduling policy
satisfying the bandwidth constraint. Since there will be no
AoS decrease to broadcast source n when the AoS of user n
equals 0, to formulate the AoS lower bound, we only focus
on analyzing policy 7 that broadcasts source n only if his
current AoS s, (t) > 0. Following policy 7, a sample path of
AoS, denote by w is obtained. Suppose up to slot 7', the BS
broadcasts update packets of source n for a total of L. times,
and user n receives K packets successfully. Similar to the
analysis in [12], when T" — oo, any strategy that transmits
updates to user n less than a fixed constant times will lead to
an infinite average AoS and is thus far from optimum. We call
such strategies to be “starving strategies”. In the following
analysis, we only focus on policy 7 that belongs to “non-
starving strategies”, which implies the number of broadcasts
of source n goes to infinity when 7" goes to infinity. Then for
sample path w, we have:

= oo, w.p.l. (26)

Since each broadcast arrives at user n with probability p,,,
by the law of large numbers, we have:

T
n

K,
Thn;O ﬁ = pp, W.p.L.
The above equations imply that the number of received packets
about source n by user n goes to infinity with probability 1,

i.e.,

27)

lim KX = oo, w.p.1.
T—o0

(28)

Suppose user n receives the i" update packet about source
n at the end of slot ¢, ;. Denote 7, ; to be the inter-update
interval of user n between the receiving time-stamps of the
(i—1)™ and the ™™ update, which can be computed as follows:

Tni Vie{l,2,--- , K} (29)

K tn,i - tn,i—l;

Since all users are assumed to be synchronized initially, let
tn,o = 0,Vn. To facilitate the AoS computation during slots
[tn,x7,T], we define 7, g7 to be:

Tagrpr =T — to 7. (30)
Then sum of sequence {7, ;} satisfies:
K41
(3D

E Tn,i = T.
i=1

According to the AoS evolution, if source n has no updates
after the latest update packet has been received by user n,
the AoS s,(t) keeps zero. Denote v, ; to be the maximum
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number of consecutive slots that the AoS of user n remains 0
after the i update packet has been received by user n,
ie., sp(tn,i+7) =0,Yj € [1,v,4] and s, (tn,; +0p,+1) = 1.
The AoS of user n will start from 1 at the beginning of slot
tn,i+vn,i+1 and increases linearly until the next update packet
has been received by the end of slot ¢,, ;41. For simplicity,
we denote wy, ; = Sy (tn,i+1) = tn,it1 —tn,i —Un,; afterwards.
The total AoS of user n at the beginning of each slot between
[tn,i + 1,tn,it1] can be computed as follows:

tn,i
iy N Sn(tn,i—i-l)(sn( n, 1,+1) + 1) wr%,i Wi
§ Sn(J)_ 9 9 9
j=tn,i+1

(32)

Let Sy(w) be the average AoS over slot [1,7] of sample
path w, which can be computed by:

;X KI+1 toi
Sr(w) = ﬁ; ; j_t;1+1sn(j)

i\f: +1ZK +1 'w,” +w72L,i
K,?+1

(33)

Let MJ]
denote ~,, = Ky H . Then S7(w) can be simplified and upper
bound as follow

denote the sample mean of a set of variables and

ST (w) =

NZ% (_

(a) 1
> NZ% (— [w] +§M[wn]>, (34

where inequality (a) is obtained by the generalized mean
inequality M[w?2] > M[w,]?. To further lower bound St (w),
in the following analysis, we first compute M[w,,] for each
fixed ~,, then figure out the constraints on the values that
sequence {7, } can take. Then, searching for the lower bound
of AoS can be formulated into an optimization problem,
where the objective is to minimize the lower bound of
limy_, o E[S7(w)] under constraints about {~, }.

Given -y, the computation of MJw,] is divided into two
steps. First, we obtain M[w,] + M[v,] and then we com-
pute MJv,]. The sum of M[w,] and M][uv,] is obtained as
follows:

]+ 2M[wn])

Mw,, ] + M[vy,]
KT41 KT41
(@) it Wnyi + Dot Ungi
KT +1 KT +1
(b) T 1
) - 35
KI'+1 v, )

where equality (a) is obtained by definition of M[:] and equal-

KT 41
ity (b) is because Ty, j+1 = Wy + Vp,; and T =Y. 0" + Th,i-

Since update packet arrives independently in each slot
with probability A,,, the consecutive number of slots that no
update packets appear v, ; are ii.d random variables with
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geometric distribution of coefficient A,,. By the law of large

numbers,

1-A,
An

M[v,,] = Efvy, ;] = ,w.p.1. (36)
Plugging Eq. (36) into the Eq. (35), the mean value M[w;,]

can be written out as a function of ~,,:

1 1
Mfw,] = — = 5= + 1L, wp.L.

n

(37)

The first constraint on -, is obtained through the lower
bound of MJ[w,]. Recall policy m only broadcasts updates
of source n when the AoS of user n is no longer 0. Thus,
Sn(tn,i) > 1, which implies M[w,] > 1. According to
Eq. (37), we have the following restrictions on 7,,:

1

1
— =1 20=7%< )\naW'pJ'

Yo An (38)

The second constraint on {+,,} inherits from the bandwidth
constraint that no more than one source can be broadcasted in
each slot. By summing up the bandwidth constraint in each
slot, i.e., Eq. (5¢), from ¢ = 1 to 7', we can obtain the
following inequality on sequence {L}, i.e.,

N
drl<r
n=1

(39)

. K11
Recall that when T" — oo, we have 7y, = limp oo —%— =

limy_, o KTT By plugging Eq. (27), i.e., the relationship

between K. and LT into Eq. (39), we have:

N

< wp.l. (40)
< Pn

Thus, for any non-starving policy 7 that satisfies the band-
width constraint, the lower bound on its AoS performance
can be computed by computing {~,}, and then place Eq. (37)
into Eq. (34). Based on the above analysis, let AoS; g be the
average AoS lower bound over the entire network, searching
for AoS;p can be formulated into the following optimization
problem:

’YH 3
1/1 1
s\~ tH (41a)
2 (’Yn An )]
al v
st, p =<1, (41b)
Yo < Ap, foralln=1,2,--- N, (4lc)

For any policy m, we can conclude that the average Aol
obtained over T' consecutive slots is larger than AoSpp with
probability 1 when T — oo. We will then proceed to talk
about how the solve the above optimization problem.

Notice that the objective function is convex with closed
polygon constraint. For simplicity, denote v = [y1, -+ ,Yn]
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andv = [vq, -,
as follows:

L(¥, p,v)
N 2
1 1/1 1-)\, 1/1 1-M\,
_N;% (2 (vn An ) +2(vn An
N ~ N
+N<Zp_n_1>+zyn(7n
n=14" n=1

where 1 and v > 0 are the Lagrange multipliers. According to
the Karush-Kuhn-Tucker (KKT) conditions, when the function
reaches its minimum, the condition V,L(7, it,) = 0 holds

for any n, i.e.,
1 [/1=M0\% /1-X\, L1 e
- _ T o TP

Hence, the optimum +,, can be expressed as a function of p
and v,:

T-M\2 1-),
n:]- -
k /\/< A ) A

Notice that the primal constraint -, < A, implies that
v, = 0, if 7, < A,. Next, consider the Complete Slackness
(CS) conditions:

vn|. We can write out the Lagrange function

)

(42)

(43)

+N <— + 21/n) (44)

Pn

(45a)

— M) =0, Vn. (45b)

Then the optimum ~;; can be computed as follows:
2u*N

7;—maX{1/\/<1 : >2_<1;:‘n)+ Pn

where p* is the Lagrange multiplier that keeps ZN Lo

s An,

APPENDIX B
PROOF OF LEMMA 3

To simplify the notations, we consider N = 2 and denote
s = [s1,s2] in the following discussion. The analysis can
be generalized N > 2. Similarly, we prove the submodular-
ity investigating into the Bellman operator. Suppose v )( )
has the submodularity characteristic, we will then show that
Va(kﬂ)(-) obtained after the (k + 1)™ iteration possesses the
same characteristic.

With no loss of generality, assume ¢ = 1,7 = 2. By the
submodularity of Vak)(-), we have

VIR ([s1 + 21,80 — 22]) + VF ([s1, s2])
> V(y(k)([sh So — 22]) + Va(k)([sl + 21, $2]).
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Notice that for any action ai,ao,as,aq, we have
C([Sl + 21,82 — 22],a1) — C([Sl,SQ — ZQ],GQ) = 7z and
C([s1 + 21, s2],a3) — C([s1, $2], a4) = z1. Define A be:

A £ minEg g [V ([s], s2])|[s1 + 21, 82 — 22], ]
o))

|
[817 82]7 a]

]
)

+ minEy o [Va([sh, s

— minEy , [V(k)([sl, s5])|[s1, S2 — 22], a
a

= minBy o [Va([s1, s5])|[s1 + 21, 52, .

To show the submodularity holds for k£ + 1, it is suffices to
prove A > 0. Let 7(F*1(s) = argmin, ESI[V(y(k)(s’ﬂs,a].
For s1 # 0 and sy — 2o # 0, the proof is divided into two
cases:

D). If 7D ([s) + 21,80 — 20]) = 7+ ([s1,82])) = @
With no loss of generality, assume a = 1. Since a may not be
the optimum strategy for state [s1, s2 — 22| and [s1 + 21, S2],
we have
minE g [V (5, 5551, 52 — 22], ]

< By o [V (8], sh)l[s1, 52 — 22], al,
and

min By o [Va([s1, s5ll[s1 + 21, 52], a)]
< Eg s [Val[s1, s5]l[s1 + 21, 52], @)).

By plugging them into A we have:

A>Eg ol V. ([, s5])|[s1 + 21, 82 — 23], @]

[
+Eqp o VAP ([s7, 55))|[s1, 52], ]
—Eq, o, VAP ([s1, 5] [s1, 82 — 22, ]
—Eqp o, VP (81, 85)I[s1 + 21, 82], ]

A
=1 —p) (V¥ ([s1+214+1,80 — 2+ 1))

+VHE ([s1 41,80 +1]) = VI ([s1 41,50 — 20 +1])
— V¥ ([s1 4 21 + 1,82 + 1])). 47)
Then according to the submodularity characteristic,

we have A > 0. The case when @ = 2 can be verified
similarly.

2). If 7+ ([s1 + 21,80 — 22]) = a1, 7F V) ([s1, 82]) =
as, a1 # asz, with no loss of generality, suppose a; = 1 and
ag = 2.

If p; < po, similar to the previous analysis, we have
minEq; o [V ([s1, 53])[s1, 52 —

@ Z2]a a]

< Esl,sz [Vosk)([slla 8/2])“517 S2 — ZQ]) al]?
and
min By o [Va([s1, s2))l[s1 + 21, 52], a]

< By o [Va([s1, 85])|[s1 + 21, 82], az].
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Then, A can be lower bounded by:

A=>Eg /[ o [51752])“51"‘217 S9 — 22, a1]
Eop o [VA¥ ([s1, 8])[[51, 5], az]
— By o [V ([s1, 55))|[51, 52 — 22], a1
—Eqp 5 [V ([s1, s3] [51 + 21, 5], az]

= (1 —pl)(V(k ([s14+ 21+ 1,82 — 22+ 1))

— VI ([s1 41,82 — 22 + 1]))
+ (1= p) (VP ([s1 + 1,80 +1])

— V) ([s1 4 21 + 1,52 4+ 1))

= (p2 _pl)(Vg(/k)([Sl +z14+ 1,8 — 22+ 1))
— VI ([s1 + 1,80 — 22 + 1]))
+ (1= p2) (VI ([s1 + 21 + 1,89 — 20 + 1])
+ VI ([s1 + 1,89 +1])
— Vék)([sl +1,80 — 22+ 1])

— VI ([s1+ 21+ 1,52 + 1)), )

By monotonic, We have V(k)([sl +2 41,50 — 2+ 1]) —

(y(k)([sl + 1,82 — 22+ 1]) > 0. Then combine the submodu-
larity of Va(k), A > 0 can be verified.

The case p; > p2 can be verified in the same way and is
hence omitted.

And for the case that s; = 0 or so — 29 = 0, the proof needs
some rectification similar to the proof in lemma 1, which is
omitted here. Based on the above analysis, we have A > 0

and the submodularity of V(y(kﬂ) can be verified.

APPENDIX C
PROOF OF LEMMA 4

Notice that V,,(s) is obtained by taking the minimum of all
possible action sequence, hence, by choosing a(t) = 0 all the
time, we will formulate an upper bound on the a-discounted
problem. In this case, starting from any state s, according to
the probability transfer function, the state of the decoupled
bandit at time ¢ will satisfy s(¢) < s+ ¢. We can obtain the
upper bound of V,,(s) by computing the total cost of applying
this naive strategy:

i spt—)=—— 4 1
— l—a (1-a)?

Hence for every state V,,(s) < oo. Based on this char-
acteristic, we can use a value iteration to approach the a-
discounted value function. Fixing V,(0) = 0, the discounted
value function obtained in the (k + 1)1 iteration can be
obtained by:

VD (5) = ngénl}{C’(s ,a) + aEo VP (s')]s, al},
ac

where Ey [VF(s')]s,a] = Y, Va(k)(s’)Pr(s’|s, a) denotes the
expected a-discounted function in the next time slot. We will
then prove the monotonic characteristic of the value function

by induction, suppose Va(k) (s) is a monotonically function of
s, assume that 1 < s1 < s9, then if @ = 0, according to
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the cost function C'(s,a) and the monotonic characteristic of
V¥ (s), we will have the following inequality:

C(51,0) + aVF®) (51 + 1) < C(s9,0) + aV. P (55 4+ 1).

When a = 1, starting from state s; # 0, the bandit will
evolve into state 0, 1 and state s1+ 1 with probability (1—\)p,
Ap and 1 — p, respectively; starting from state so, the bandit
will evolve into state 0, 1 and state so + 1 with probability
(1 = X)p, Ap and 1 — p. Then according to the monotonic
characteristic of Vogk)(s), we will have

C(s1,1) + aBy [VF) (s)]s1, 1]
< C(s9,1) + aBy [VF) (5)]59,1].

By taking the minimum over action set A, the value of
/AR (s) can be obtained and the following inequality holds:

VI (s1) < VD ()

Notice that when k — oo, we will have V" (s) = Val(s).
Hence the monotonicity of the value function is proved.

APPENDIX D
DERIVATIONS OF COROLLARY 1

According to the transition probability of restless bandit,
the state transition graph by applying threshold policy 7 can
be plotted in Fig. 6.

Denote ¢ ,§T> to be the steady state distribution that the bandit
is in state s if a policy actives when s > 7 but idles when
s < 7. Then according to the transition rule (18) and Fig. 6,
the relationship with the steady state distribution must satisfy:

1) For s < 7, the bandit remains passive, hence:

TR

2) For s > 7, the bandit is chosen to be active. With
probability 1 — p the transmission fails and AoS grows to
s+ 1:

(49a)

€0 = (1 —p)el) Vs > 7. (49b)

The transmission succeeds with probability p, if a new
update is sent to the BS with probability A, then the bandit
will go to state s = 1:

=D el g

S=T

(49c¢)

If no update arrives and the transmission succeeds, the AoS
at the next slot will go down to zero:

o0

¢ == =g @9
All these state distributions sum up to 1, hence:
> =1. (49¢)
s=0
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Passive Actions

Active Actions

Fig. 6. Probability transfer graph for threshold policy 7, for states below T,
the bandit remains passive; for states that are equal or larger than threshold 7,
the bandit becomes active. The transmission probability are denoted below the
arrow.

Based on Eq. (49b)-(49e), the steady state distribution féT)
can be computed as follows:

1— 1
L (01
A
1/ —— -—1 1<
ng): /( h\ + 7+ ), <s<T; (50)
(I—p) T

Then, the average total cost F'(7, W) for given W if threshold
policy 7 is employed can be computed:

T—1 e}
F(r, W)= s+ (s +W)El)
s=0 s=T
T—1 e}
=3 s> s+ (1—p) T
s=1 s=T

=1, &4 1 "
=———47+2 (= =)+ (7+W). (5D
T = D)

APPENDIX E
DERIVATION OF COROLLARY 2

According to our previous analysis, the optimum policy to
solve the decoupled bandit possesses a threshold structure.
Assume Top is the optimum threshold, i.e., when AoS satisfies
0 < s < 7o the bandit idles and for s > 7o the bandit
is activated. Denote V' (s) to be the differential cost-to-go
function at state s, let § be the optimum average cost. Then
the Bellman equation can be written out as follows:

V(s)+ B =min{(W+s)+ (1 —p)V(s+1)
+p(AV (1) + (1 = N)V(0)),

s+V(s+1)} (52)

The above Bellman equation also implies, since it is optimum
to activate the bandit in state 7.y, we have:

W +p((1=X)V(0) + AV (1)) < pV(7op + 1), (53a)
and it is optimum to idle in state 7op — 1 implies:
W +p((1 = XV(0) + AV (1)) < pV(Topr)- (53b)

The optimum threshold 7,,; is obtained by first writing out
V(7opt) and G as a function of threshold 7o. Then establish
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an equation to obtain Ty, With no loss of generality, let us
assume AV (1) + (1 — A\)V(0) = 0.

To obtain V (7o), we first consider states satisfy s > 7op.
Since scheduling is the optimal action by assumption, accord-
ing to the above Bellman equation Eq. (52), the relationship
between V' (s) and V(s + 1) is as follows:

V(s)=(—B+WHs)+(1-pV(s+1). (54

Then, substitute V(s+1) = (=+W+s)+(1—p)V(s+2)
into the above equation, we have:

V(s)=(—B+W+s)+(1—p)(—B+W +s5+1)

+(1=p)2V(s+2). (55
Repeating this procedure for K times, we then have:
K-1
V(s)=> (1=p)"(—=B+W+s+k)+(1-p) V(s + K).
k=0
(56)

Consider K — oo, since lim .o (1 —p)XV (s + K) =0,
the differential cost-to-go function V(Top[) can be obtained as
follows:

1 1-—
V(s)= —(=B+W +5)+ —2. (57)
p p
Recall Eq. (53a),(53b) and the assumption that

(I — NV(0) + AV(1) = 0, since 7o is the optimum
active threshold, we have:

w

V(Top[) S D < V(Topt + 1) (58)
Recall that V(s) is monotonically increasing,
the above inequality implies there exists a v € [0,1)

such that V(o + 7v) = % Plugging Eq. (57) into
V (Topt + ), wWe can compute [ as follows:

1—p
BZTopl+'7+—'

(59
Next, we consider states s < T,p; and write (1 — A\)V(0) +
AV (1) as a function of 7. Since the optimum action is to idle
when s < 7o, according to the Bellman equation, we have:

V(s)=(=B+W+s)+V(s+1). (60)

Substitute V(s — 1) = (= + s — 1) + V(s) into the above
equation and repeat this procedure for s — 1 times, we can
then obtained the following equation about V(1) and V(7o ):

(Topl - 1)(_25 + 7-opt)

V(1) = >

+ V(Topt)- (61)

The Bellman equation for V'(0) can be written out as follows:
V(0)=—-F+(1-NV(0)+ AV (1),

which implies

V(0)=—-=+V(1).

p
N (62)
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Plugging the above equality into assumption (1 —A\)V(0) +
AV (1) = 0, the differential cost to go function V(1) can be
obtained:

vy =28

Plugging Eq. (62) and Eq. (63) into Eq. (61), we can write

out V(7opt) as follows:
(Topt = 1) (=28 + Topt) 4 1 -
2 A

a function about 7. Recall
= Topt» We have another expression

(63)

V(7opt) = — /\ﬁ- (64)

Next, we establish
Eq. (57), when s
about V (Topt):

1 1—p
= 5(_ﬁ+ W+Topt) + p—2

V(Topt) (65)

Since the above two equalities should be equal, we can
establish the following equation:

. 1-— )\ (Topt — 1)(—25 —+ TOpt)
A 2

1 1—
+];(—ﬁ + W+ Top) + e

B+

P _y.

(66)

By substituting 5 = 7o, +7+ 1_Tp into the above equation,
we have:
1—A 1—p

- 7—0 + +—
Y ( pt Y P )

(Topt — 1) (—Topt — 2y = 222) 4
i opt opt D + —(W _ ’y) —0.
2 P
The above equation is a quadratic equation about variable

(67)

TOpl:
1, 1 1 5
2 Topt +(v+ » + N §)Topl
1 1-A 1—p 1—p
— (W —~)+ v+ —2 — 2y =0.
S =)+ 2+ D) -2
(68)

Since Top is an integer and y € [0,1), we can finally obtain
the threshold for fixed W, i.e.,

5 1 1
Topt = L(§ 5 X)
2

5 1 1 W 1-A1-p 1-p

————— 21 —— 2 .

+\/<2 p A>+<p A p>+ pJ

(69)
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