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Abstract— This work is motivated by the need of collecting
fresh data from power-constrained sensors in the industrial
Internet of Things (IIoT) network. A recently proposed metric,
the Age of Information (AoI) is adopted to measure data freshness
from the perspective of the central controller in the IIoT
network. We wonder what is the minimum average AoI the
network can achieve and how to design scheduling algorithms to
approach it. To answer these questions when the channel states
of the network are time-varying and scheduling decisions are
restricted to both bandwidth and power consumption constraint,
we first decouple the multi-sensor scheduling problem into a
single-sensor constrained Markov decision process (CMDP) by
relaxing the hard bandwidth constraint. Next we exploit the
threshold structure of the optimal policy for the decoupled single
sensor CMDP and obtain the optimum solution through linear
programming (LP). Finally, an asymptotically optimal truncated
policy that can satisfy the hard bandwidth constraint is built
upon the optimal solution to each of the decoupled single-sensor.
Our investigation shows that to obtain a small average AoI over
the network: (1) The scheduler exploits good channels to schedule
sensors supported by limited power; (2) Sensors equipped with
enough transmission power are updated in a timely manner such
that the bandwidth constraint can be satisfied.

Index Terms— Age of information, cross-layer design,
opportunistic scheduling, constrained Markov decision process.
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I. INTRODUCTION

THE forthcoming Industrial 4.0 revolution brings more
stringent data freshness requirement to support the higher

level automated applications such as industrial manufactur-
ing and factory automation [2]. In many of these appli-
cations, the monitor or the central controller collects data
from sensors tracking real-time processes via time-varying
wireless links [3]. The finite battery capacity, limited recharge
resources [4] and wireless interference constraints cast restric-
tions on real time data sampling process and communica-
tions between the sensor and the monitor. In addition, data
freshness requirement is different from traditional quality of
service (QoS) guarantees such as communication latency and
throughput. Thus, it is of great importance to revisit sampling
and scheduling strategies in wireless networks in order to
obtain more fresh information.

Previous techniques on minimizing communication latency
and maximizing throughput may not be applied directly to data
freshness optimization, since low latency and high throughput
may not fulfill a good data freshness requirement. A relevant
metric that captures data freshness, the Age of Information
(AoI) [5], namely the time elapsed since the generation
time-stamp of the freshest information stored at the receiver,
has received increasing attention. As have been shown
in [6]–[8], analyzing AoI performance and guaranteeing low
AoI are especially challenging since the performance is
affected by fundamental trade-off between communication
throughput and transmission delay.

Moreover, combating the time-varying nature of wireless
channels with limited communication resources such as power
consumption and bandwidth is important but challenging in
stochastic networks, since these constraints and randomness
appear at different layers of the communication networks [9]
and require a joint design of physical and data link layer.
In addition, the exponential growth of the cardinality of system
states and action spaces, known as “the curse of dimension”,
creates obstacles in searching for the optimal policy.

To address these challenges, in our paper, we consider a
single controller multi-sensor IIoT network where each sensor
is scheduled to transmit update packet by the central controller,
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Fig. 1. Illustration of a typical industrial Internet of Things (IIoT) network.

as depicted in Fig. 1. The goal is to understand the how to
design AoI minimization strategies in time-varying wireless
channel for power constrained sensors. This scenario can be
used to model the following applications in Industrial 4.0:

• Factory Automation: This application requires the cen-
tral controller supervising all rounds of the production
process in order to guarantee efficient and safe operation.
Each sensor is charged by different amount of power and
tracks different servers during the manufacturing process.
The central controller designs efficient load balancing
algorithm for parallel servers based on the current man-
ufacturing process reported by each sensor.

• Intelligent Logistic: The design of efficient intelligent
logistic system requires precise observation and esti-
mation of user demands. In this scenario, sensors can
be viewed as power constrained wireless hot spots that
collect time-varying user preferences and requirements,
while the central controller makes real-time scheduling
decision in the logistic network based on these demands.

Main features of the model are: wireless channels con-
necting sensors and central receivers are time-varying, and
information collected by the sensors is time-sensitive. We
generalize our previous work [1] by assuming the channel evo-
lution has Markov property, which is more suitable to capture
real-time fading effect. To ensure successful transmission, dif-
ferent level of transmission power is used in different channel
state, while each sensor has an average power consumption
constraint. The overall objective is to design scheduling policy
that meets both power and bandwidth constraint, so that
the expected average AoI over the entire network can be
minimized. Based on sensor level decomposition through a
relaxation of the hard bandwidth constraint, we propose a
truncated scheduling policy that can achieve an asymptotic
optimal average AoI performance over the entire network.

The main contributions of the paper are summarized as
follows:

• Consider that fresh update packet can be transmitted at
every transmission, we propose a cross-layer framework
to study AoI minimization scheduling in multi-user band-
width limited network with power constrained sensors.
The channel is modeled to be a finite-state ergodic
Markov chain and remains constant in each slot. Different
amount of transmit power is used in different channel
state to ensure successful packet transmission. Unlike
previous work, we consider both power and bandwidth
constraint in a multi-user setup. This model captures

key features of practical cross-layer network optimization
problem and facilitates analysis.

• We decouple the multi-sensor scheduling problem
into a single-sensor constrained Markov decision
process (CMDP) by relaxing the hard bandwidth con-
straint and the Lagrange multiplier. The threshold struc-
ture of the optimal policy for the decoupled single-sensor
CMDP is revealed, and the search for the optimal pol-
icy is converted into a Linear Programming (LP). This
approach has not been used in AoI problems before.

• Finally we search for the Lagrange multiplier so that
the bandwidth constraint can be satisfied through dual
method and obtain the optimum solution that satisfies
the relaxed bandwidth constraint. Then, we propose an
asymptotic optimum truncated scheduling policy based
on the optimum solution to the relaxed problem so that
the hard bandwidth constraint of the network can be
satisfied. The performance of the algorithm is analyzed
theoretically and verified through simulations.

The remainder of this paper is organized as follows.
We review some related work in Section II. The network
model and the data freshness metric, AoI, are introduced
in Section III. In Section IV, we decouple the multi-sensor
scheduling problem into single-sensor level CMDP and search
for the optimal policy through LP. In Section V, a truncated
multi-sensor scheduling policy is proposed. Section VI evalu-
ates and analyzes the performance of the proposed algorithm.
Section VII draws the conclusion.

Notations: Vectors and matrices are written in boldface
lower and upper letters, respectively. The probability of
event A given condition B is denoted as Pr(A|B). The
expectation operation with regard to random variable X is
denoted as EX [·]. The cardinality of a set Ω is denoted as |Ω|.

II. RELATED WORK

The analysis and optimization of AoI performance in aver-
age power constrained point to point communication system
have been studied [10]–[16]. It is revealed that the optimal
sampling policy with power constrained transmitter in the
presence of queueing delay [12] and transmission failure [15]
possesses a threshold structure, i.e., sampling and update
transmission occur when information at the receiver is no
longer fresh while the update packets, if successfully received,
can significantly reduce data staleness.

Another line of work focuses on designing scheduling
strategies to minimize AoI performance in multi-user wireless
networks [17]–[26]. When all the users in the network are
identical and update packets can be generated at will, a greedy
policy that schedules the user with the largest AoI is shown
to be optimal [17]. When there is no packet-loss in the
network, this greedy policy is equivalent to the round robin
strategy, which is shown to be order optimal when update
packets can not be generated at will and arrive randomly [24].
In [18], it is revealed that users with relatively bad channel
states are updated less frequently. Scheduling in networks with
time-varying channels are studied in [20], [21], where channels
with two states are considered, and centralized and decentral-
ized policies to minimize AoI are proposed respectively.
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Cross-layer control strategy to minimize communication
latency under transmit power constraints have been studied
in [27]–[34]. In [32], a Lazy scheduling policy that assigns
scheduling decision based on the queue backlog is proposed.
Considering the time-varying fading nature of wireless chan-
nels, rate and power adaptation strategy is proposed in [33].
To minimize queueing delay in a point to point time-varying
channel with average power constraint on the transmitter,
a probabilistic scheduling strategy is proposed in [29], [30].
However the above work consider wireless fading to be
an i.i.d process. When channel state evolution has Markov
properties, scheduling to minimize delay performance and
maximize throughput have been studied in [27], [28], [34].
Scheduling policy based on value iteration is proposed in [28]
and a Whittle-like index policy to achieve delay-power trade-
off is studied in [27]. In [34], the multi-user power and
bandwidth constrained scheduling problem is solved by packet
level decomposition, and an asymptotically optimum truncated
scheduling policy is proposed. Rajat et. al studied a joint rate
control and scheduling problem for age minimization under
general interference constraints [19], where joint rate control
and scheduling policies are investigated for age optimality,
and a separation principle policy is found to be approximately
optimal. However, no power constraint is considered in that
work.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider an industrial Internet of Things (IIoT) network
as depicted in Fig. 1, where a central controller collects
time-sensitive data from N sensors via wireless links. Let the
time be slotted and use t ∈ {1, · · · , T } to denote the index
of the current slot. Let the indicator function un(t) = {0, 1}
be a scheduling decision made by the central controller at the
beginning of slot t. If un(t) = 1, then sensor n is scheduled
to transmit update packet about his observation in slot t.
We assume each successful transmission takes one slot and the
packet will be received successfully by the end of the slot. Due
to limited bandwidth constraint, no more than M sensors can
be scheduled in each slot. We consider a non-trivial case and
assume the bandwidth M < N , thus we have the following
constraint on un(t):

N∑
n=1

un(t) ≤M, ∀t. (1)

To model the time-varying characteristic of the channel
between each sensor and the central controller, we class each
channel into Q states and assume the channel state of sensor n,
denoted by {qn(t)} is a Q-state ergodic Markov chain with
transision probability p

(n)
i,j � Pr(qn(t + 1) = j|qn(t) = i).

If sensor n is scheduled to transmit updates when the current
channel state is q, in order to guarantee the channel capacity
is larger than the size of an update packet, it will consume
ω(q) units of power. Similar to [27], [30], [32], we assume
the transmitted packet will be successfully received by the
central controller at the end of the slot. For a typical sheduling

Fig. 2. Illustration of AoI evolution of a specific sensor. On the top, sample
sequence representing the receiving time-stamps of the generate-at-will update
packets. On the bottom, sample paths of AoI (red). The yellow dots depict
the AoI at the beginning of each slot. Upon receiving a new packet, the AoI
will drop to 1 at the beginning of next slot.

strategy π that assigns un = [un(1), · · · , un(T )] to sensor n,
the average power consumed in T consecutive slots is:

En(un(π)) =
1
T

T∑
t=1

un(t)ω(qn(t)). (2)

B. Age of Information

We measure data freshness of the central controller by
using the metric Age of Information (AoI) [5]. By definition,
the AoI is the time elapsed since the generation time-stamp
of the freshest information at the receiver. An illustration of
AoI evolution for a specific sensor is plotted in Fig. 2:

Let xn(t) be the AoI of sensor n at the beginning of
slot t. By definition, it shows the number of slots elapsed
since the latest delivery from sensor n is generated. We
consider a generate at will model similar to [10], [18] and
focus on minimizing the average AoI over the entire network.
In this model, update packets generated before slot t will
be discarded and the system experiences no queueing delay.
Recall that if un(t) = 1, sensor n is scheduled in slot t and an
update containing the freshest information tracked by sensor n
will be received by the central controller, then by definition
xn(t + 1) = 1; otherwise, since there is no update packet
received from sensor n during slot t, xn(t) increases linearly
and xn(t+1) = xn(t)+1. The AoI xn(t) evolves as follows:

xn(t + 1) =

{
1, un(t) = 1;
xn(t) + 1, un(t) = 0.

(3)

C. Problem Formulation

For a given network setup with N sensors and channel states
evolution {p(n)

i,j }, we measure the data freshness of the IIoT
network by following policy π in terms of the expected average
AoI of all sensors at the beginning of each slot for a total of
consecutive T →∞ slots, which can be computed as follows:

J(π) = limT→∞{ 1
NT Eπ

[
T∑

t=1

N∑
n=1

xn(t)|x(0)
]
}, (4)
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where the vector x(t) = [x1(t), x2(t), · · · , xN (t)] ∈ NN

denotes the AoI of all sensors at the beginning of slot t. In this
work, we assume that all the sources have been synchronized
initially, i.e., x(0) = 1 and omit it henceforth.

Let ΠNA denote the class of non-anticipated policies,
i.e., scheduling decisions are made based on past, current AoIs
{xn(t)}, channel states {qn(t)} and their evolving probabili-
ties {p(n)

i,j }. No information about the future AoI or channel
states can be used. We assume the average power constraint of
each sensor is known by the central controller. In this research,
we aim at designing policy π ∈ ΠNA to minimize the average
expected AoI of all the sensors, while the time average power
consumption constraint of each sensor can be satisfied. The
original bandwidth and power constrained AoI minimization
problem (B&P-Constrained AoI) is as follows:

Problem 1 (B&P-Constrained AoI):

π∗ = arg min
π∈ΠNA

lim
T→∞

{ 1
NT

Eπ

[
T∑

t=1

N∑
n=1

xn(t)

]
}, (5a)

s.t. Eπ

[
N∑

n=1

un(t)

]
≤M, ∀t, (5b)

lim
T→∞

1
T

Eπ

[
T∑

t=1

un(t)ω(qn(t))

]
≤En, ∀n. (5c)

Notice that the hard bandwidth constraint (5b) in every

slot t suggests, there are

(
N
1

)
+ · · · +

(
N
M

)
possible

scheduling decisions in each slot, it is hard to approach
this problem through dynamic programming. We tackle this
challenge through the following approaches:

• Inspired by [28], [34], [35], in Section IV-(A), we first
relax the hard bandwidth constraint (5b) and adopt a
sensor level decomposition by using Lagrange multi-
plier. After relaxation, multiple sensors can be scheduled
simultaneously.

• In Section V, we propose a truncated scheduling policy
to satisfy the hard bandwidth constraint (5b) based on the
solution to each of the decoupled single sensor.

IV. SCHEDULING BY SENSOR-LEVEL DECOMPOSITION

In this section, we start by relaxing and decoupling the
B&P-Constrained AoI, then formulate the decoupled single
sensor scheduling problem into a constrained Markov decision
process (CMDP). We exploit the threshold structure of the
optimal stationary randomized policy and the optimal strategy
is obtained through linear programming (LP).

A. Sensor Level Decomposition

Let us first relax the hard constraint (5b) into an
time-average constraint, the relaxed bandwidth and power
constrained AoI minimization problem (RB&P-Constrained
AoI) can be organized as follows:

Problem 2 (RB&P-Constrained AoI):

π∗
R = arg min

π∈ΠNA

lim
T→∞

{ 1
NT

Eπ

[
T∑

t=1

N∑
n=1

xn(t)

]
}, (6a)

s.t. lim
T→∞

Eπ

[
1
T

T∑
t=1

N∑
n=1

un(t)

]
≤M, (6b)

lim
T→∞

Eπ

[
1
T

T∑
t=1

un(t)ω(qn(t))

]
≤En, ∀n. (6c)

Notice that any policy π that satisfies the bandwidth constraint
in the B&P-Constrained AoI satisfies the bandwidth constraint
in RB&P-Constrained AoI, hence the expected average AoI
following policy π∗

R formulates a lower bound on the expected
average AoI obtained by π∗. To solve Problem 2, let us place
the relaxed constraint into the objective function:

L(π, W )

= lim
T→∞

{ 1
NT

Eπ

[
N∑

n=1

T∑
t=1

(
xn(t)+Wun(t)− WM

N

)]
}.

(7)

For fixed multiplier W , denote π(W ) be the optimum policy
that minimizes the Lagrange function (7), i.e.,

π(W ) = arg min
π∈ΠNA

L(π, W ). (8)

Notice that the optimum policy π∗
R to Problem 2 is a mixture

of no more than two policies π(W1) and π(W2), which
minimizes the Lagrange function under different multipliers
W1 and W2, respectively. Thus, in the following analysis,
we will first solve π(W ) for fixed W and then provide how
to obtain the two policies π(W1) and π(W2).

For fixed W , minimizing (7) can then be decoupled into N
single sensor AoI and scheduling penalty minimization prob-
lem with average power consumption constraint (5c), then the
decoupled single sensor power constrained cost minimization
problem (Decoupled P-Constrained Cost) can be written out
as follows:

Problem 3 (Decoupled P-Constrained Cost):

π∗
d,n = arg min

π∈ΠNA

L(πn, W ), where (9a)

Ln(πn, W )= lim
T→∞

1
T

Eπn

[
T∑

t=1

(xn(t) + Wun(t))

]
, (9b)

s.t lim
T→∞

1
T

Eπn

[
T∑

t=1

un(t)ω(qn(t))

]
≤ En.

(9c)

Since minimizing (7) gets decoupled, we omit the subscript
n henceforth. We formulate the Decoupled P-Constrained Cost
minimization problem into an CMDP in Section IV-(B) and
analyze the structure of the optimum policy in Section IV-(C).
In Section IV-(D), we convert the single-sensor optimization
problem with fixed W into a Linear Programming (LP).

B. Constrained Markov Decision Process Formulation

The decoupled single-sensor scheduling problem can be
formulated into a CMDP that consists of a quadruplet
(S, A, Pr(·|·), C(·, ·)), each item is explained as follows:

Authorized licensed use limited to: Yale University. Downloaded on January 18,2023 at 01:58:04 UTC from IEEE Xplore.  Restrictions apply. 



858 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 5, MAY 2020

• State Space: The state of a sensor in slot t is the current
AoI and the channel state (x(t), q(t)). The state space
S = {x× q} is thus countable but infinite.

• Action Space: There are two possible actions s ∈ A =
{0, 1}, while s(t) = 1 denotes the sensor is scheduled to
deliver updates to the central controller in slot t, while
s(t) = 0 represents that the sensor keeps idle and is not
scheduled. Notice that s(t) is different from scheduling
decision u(t), which has strict bandwidth constraint.

• Probability Transfer Function: If the sensor is not
scheduled during slot t, i.e., s(t) = 0, then x(t + 1) =
x(t)+1, otherwise if the sensor is scheduled, then the AoI
drops to x(t+1) = 1. The channel state q(t+1) evolves
independently of x(t) and only relies on q(t) due to its
Markov property, hence the probability transfer function
from state (x, q) is organized as follows:

Pr((x, q)→ (x′, q′)) =

⎧⎪⎨
⎪⎩

pq,q′ ,
{s = 0, x′ = x + 1}
or {s = 1, x′ = 1} ;

0, otherwise.
(10)

• One-Step Cost: For given state (x, q), the one-step cost
by taking action s contains AoI growth and scheduling
penalty, which can be computed as follows:

CX(x, q, s) = x + Ws, (11a)

while the one-step power consumption is:

CQ(x, q, s) = ω(q)s. (11b)

The objective of the decoupled CMDP is to design a
scheduling policy π such that the following average cost over
infinite horizon can be minimized:

lim
T→∞

1
T

Eπ

[
T∑

t=1

CX(x(t), q(t), s(t))

]
,

while the average power constraint is satisfied,

lim
T→∞

1
T

Eπ

[
T∑

t=1

CQ(x(t), q(t), s(t))

]
≤ E .

C. Characterization of the Optimal Policy

In this part, we focus on exploiting the threshold structure
of the optimal policy. We provide the formal definition of
stationary randomized policies and stationary deterministic
policies:

Definition 1: Let ΠSR and ΠSD denote the class of station-
ary randomized and stationary deterministic policies, respec-
tively. Given observation (x(t) = x, q(t) = q), a stationary
randomized policy πSR ∈ ΠSR chooses action s(t) = 1
with probability measure ξx,q ∈ [0, 1] for all t. A stationary
deterministic policy πSD ∈ ΠSD selects action s(t) = a(x, q),
where a(·) : (x, q) → {0, 1} is a deterministic mapping from
state space to action space.

According to [36, Theorem 4.4], the optimal policy to
the above CMDP (Decoupled P-Constrained Cost) has the
following property:

Corollary 1: An optimal stationary randomized policy
π∗

d ∈ ΠSR exists for the decoupled single sensor power
constrained scheduling problem (9b), and it is a mixture of no
more than two stationary deterministic policies πSD1, πSD2 ∈
ΠSD. Let ρ be the weight of following stationary deterministic
policy πSD1 and (1−ρ) be the weight of following πSD2. Then
the optimum policy is:

π∗
d = ρπSD1 + (1− ρ)πSD2. (12)

Proof: According to [36, Theorem 6.3] an optimum
stationary randomized policy exists for constrained Markov
decision process with infinite state and action space. Since the
Lagrange relaxation removes only one constraint, according
to [36, Theorem 4.4], the optimum policy is a mixture of two
policies that minimize the Lagrange function with different
multipliers λ1 and λ2. Such derivations is used similarly
in [15].

To obtain the two deterministic policies πSD1 and πSD2, next
we establish an unconstrained MDP by placing the average
power consumption constraint into the objective function. Let
λ ≥ 0 be the Lagrange multiplier related to the average power
constraint, we write out the Lagrange function and the goal of
the unconstrained MDP is to minimize the following overall
average cost (we omit the constant item −λE):

lim
T→∞

1
T

Eπ

[
T∑

t=1

[CX(x(t), q(t), s(t))

+ λCQ(x(t), q(t), s(t))]

]
. (13)

For given Lagrange multiplier λ, a stationary deterministic
policy to minimize the above unconstrained cost exists. Denote
γ be the time-average cost by following the optimum strategy.
Then, there exits a differential cost-to-go function V (x, q) that
satisfies the following Bellman equation:

V (x, q)+γ = min{CX(x, q, 0)+
Q∑

q′=1

pq,q′V (x+1, q′),

CX(x, q, 1)+
Q∑

q′=1

pq,q′V (1, q′)+λCQ(x, q, 1)},

(14)

where γ is the average cost by following the optimal policy.
Next, we will prove the threshold structure of the stationary
deterministic policy for given λ, which provides insight for
the structure of the optimal stationary randomized policy
to solve the Decoupled P-Constrained Cost minimization
problem.

Lemma 1: With fixed λ, the optimal stationary determin-
istic policy for solving the Decoupled P-Constrained Cost
problem (13) possesses a threshold structure. That is there
exists a sequence of threshold τq for each state, when x ≥ τq ,
the optimal action s∗(x, q) = 1 and when x < τq , s∗(x,
q) = 0.

Proof sketch: The proof is provided in Appendix A. Here
we provide an intuitive analysis. Since communication
between the sensor and the controller is power constrained,
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Fig. 3. Illustrative of the probability transfer graph for a stationary randomized policy with Q = 2 channel states. The circles denote channel state q and the
rectangles denote the sensor’s AoI x. The forward state transmission probability (x, q) to (x+1, q′) is αx

q,q′ and the backward state transmission probability
from (x, q) to (1, q′) is βx

q,q′ .

we only schedule when the information is no longer fresh or
the channel state is good, i.e., x is large or q is small. This
behavior characterizes a threshold structure.

Notice that optimal stationary randomized policy π∗
d to

the CMDP (9b) is a randomization between no more than
two stationary deterministic policies [36], each of them can
be obtained by solving the unconstrained MDP (13) which
possesses a threshold structure. Then it can be concluded
there exists a set of thresholds τq , for each state (x, q),
if x ≥ maxq τq , the stationary randomized policy π∗

d schedules
the sensor.

D. Probabilistic Scheduling Policy for Single Sensor Case

Let us now investigate the class of stationary randomized
policies. Denote ξx,q to be the probability that the sensor is
scheduled to send updates in state (x, q). We aim at finding
a set of optimal transmission probability {ξ∗x,q} to solve the
Decoupled P-Constrained Cost problem. From Section IV-(C),
since there exists a set of thresholds τq , for each state (x, q),
if x ≥ maxq τq , the stationary randomized policy is to
schedule the sensor. Thus, the optimum policy π∗

d must satisfy
ξ∗x,q = 1, ∀(x, q), x ≥ maxq τq . Therefore, for each of the
decoupled single sensor problem, the AoI x cannot be larger
than the largest threshold maxq τq . To find the optimal policy,
we choose a large bound Xmax for x that can guarantee
Xmax ≥ maxq τq . We only consider policy that satisfies
ξx,q = 1, ∀x ≥ Xmax in the following analysis, since policies
that do not have such properties are not optimum and thus can
be excluded from the discussions.

Let μx,q denote the probability that the sensor’s AoI is x
and the current channel state is q. To illustrate the state
transition relationship, we provide transfer graph for Q = 2
as an example in Fig. 3. Let αx

q,q′ denote the one step
forward state transition probability from (x, q) to (x + 1, q′)
and let βx

q,q′ be the backward transition probability from
(x, q) to (1, q′), respectively. From the discussed threshold
structure of the stationary deterministic policies, with properly
selected Xmax, under the optimal scheduling policy, the steady
state distribution μx, q = 0, ∀x ≥ Xmax + 1, q. According to
the probability transfer graph Fig. 3, the forward and backward
transition probability for a scheduling policy ξx,q can be

computed as follows:

αx
q,q′ = Pr((x, q)→ (x + 1, q′)) = (1− ξx,q)pq,q′ , (15a)

βx
q,q′ = Pr((x, q)→ (1, q′)) = ξx,qpq,q′ . (15b)

Let μ = [μ1,1, · · · , μ1,Q, · · · , μXmax,1, · · · , μXmax,Q]T be the
steady state distribution. Let Q be the probability transfer
matrix between the states, according to Fig. 3, Q can be
constructed as follows:

Q =

⎡
⎢⎢⎢⎢⎣

β1 β2 · · · βXmax−1 βXmax

α1 0Q · · · 0Q 0Q

0Q α2 · · · 0Q 0Q

· · · · · · · · · · · · · · ·
0Q 0Q · · · αXmax−1 0Q

⎤
⎥⎥⎥⎥⎦ , (16)

where vector 0Q is a Q-dimension vector with all the elements
being 0. Matrices αx and βx are the forward and backward
transition matrix from state x, respectively, which can be
computed as follows:

αx =

⎡
⎢⎢⎣

αx
1,1 αx

2,1 · · · αx
Q,1

αx
1,2 αx

2,2 · · · αx
Q,2

· · · · · · · · · · · ·
αx

1,Q αx
2,Q · · · αx

Q,Q

⎤
⎥⎥⎦ , (17a)

βx =

⎡
⎢⎢⎣

βx
1,1 βx

2,1 · · · βx
Q,1

βx
1,2 βx

2,2 · · · βx
Q,2

· · · · · · · · · · · ·
βx

1,Q βx
2,Q · · · βx

Q,Q

⎤
⎥⎥⎦ . (17b)

According to property of the steady state distribution,
we have Qμ = μ. In addition, considering that ∀x ≥ Xmax+1,
the steady state distribution μx,q = 0, ∀q. We then have∑Xmax

x=1

∑Q
q=1 μx,q = 1. Thus, the steady distribution μ relates

to strategy {ξx,q} is the solution to the following linear
equations: [

Q− IQXmax

1T
QXmax

]
μ =

[
0QXmax

1

]
, (18)

where 1QXmax is a (Q×Xmax)-dimension column vector with
all the elements being 1 and IQXmax is a (Q×Xmax) dimension
identity matrix.

Next, we will convert the search for the optimal stationary
randomized scheduling strategy into an LP. We introduce
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a new set of variables yx,q = μx,qξx,q, each denotes the
probability of the sensor being in state (x, q) and is scheduled
to transmit an update. With this set of variables, we present
the following theorem:

Theorem 1: Solving the Decoupled P-Consrained Cost
minimization problem is equivalent to solve the following
LP problem:

{μ∗
x,q, y

∗
x,q} = arg min

{μx,q,yx,q}

Xmax∑
x=1

Q∑
q=1

(Wyx,q + xμx,q),

(19a)

s.t. μ1,q =
Xmax∑
x=1

Q∑
q′=1

yx,q′pq′,q, (19b)

μx,q =
Q∑

q′=1

(μx−1,q′ − yx−1,q′)pq′,q,

(19c)
Xmax∑
x=1

Q∑
q=1

μx,q = 1, (19d)

yx,q ≤ μx,q, (19e)
Xmax∑
x=1

Q∑
q=1

yx,qω(q) ≤ E (19f)

0 ≤ μx,q ≤ 1, 0 ≤ yx,q ≤ 1, ∀x, q.

(19g)

Proof: Let us compute the equivalent time average cost
to (9b) as a sum of {μx,q} and {yx,q}. The probability that
the sensor is in state (x, q) is μx,q. With probability ξx,q,
the sensor is selected to be scheduled and incurs a cost of
CX(x, q, 1) = x + W ; with probability 1− ξx,q the sensor is
selected to keep idle and incurs a cost of CX(x, q, 0) = x.
Then the time average cost by following policy {ξx,q} can be
computed by:

Xmax∑
x=1

Q∑
q=1

μx,q(ξx,q(x + W ) + (1− ξx,q)x)

=
Xmax∑
x=1

Q∑
q=1

(Wyx,q + xμx,q). (20)

If the sensor is scheduled to transmit in state (x, q),
the power consumed is ω(q). Then, the time-average power
consumed by employing policy {ξx,q} is:

Xmax∑
x=1

Q∑
q=1

μx,qξx,qω(q) =
Xmax∑
x=1

Q∑
q=1

yx,qω(q). (21)

With this equation the power constraint (5c) can be converted
in the linear constraint (19f). The constraint (19b)-(19d) can
be obtained by substituting ξx,q with yx,q and μx,q with rela-
tionship (18). Notice that ξx,q ≤ 1, the inequality constraint
(19e) can be obtained.

Till now, we construct an LP problem to obtain μx,q and
yx,q by following the optimum stationary randomized policy

that minimizes the total cost with fixed Lagrange multiplier
W . Next, the optimal stationary randomized scheduling policy
to minimize Lagrange function (9b) can be obtained through
the relationship between ξx,q, μx,q and yx,q. According to
the threshold structure of each deterministic policy and (12),
we will have the following property on ξ∗x,q:

Corollary 2: For any channel state q, the optimal schedul-
ing decisions ξ∗·,q is monotonically increasing, i.e.,

ξ∗x1,q ≤ ξ∗x2,q, ∀1 ≤ x1 < x2. (22)

V. MULTI-SENSOR OPPORTUNISTIC SCHEDULING

In this section, we will provide an algorithm to determine
the multiplier W so that relaxed bandwidth constraint can be
satisfied and RB&P-Constrained AoI problem can be solved.
Then, we propose a truncated scheduling algorithm for the
multi-sensor case that satisfies the original hard bandwidth
constraint (5b).

A. Determination of Lagrange Multiplier

Let g(W ) denote the Lagrange dual function, i.e.,

g(W ) = min
π∈ΠNA

L(π, W ). (23)

Since the relaxed problem gets decoupled into N single user
CMDP, the dual function can be computed by:

g(W )=
1
N

N∑
n=1

gn(W )−WM, where

gn(W )= min
πn∈ΠNA

(Ln(πn, W )) , s.t. (7c) is satisfied. (24)

By Theorem 1, the CMDP that minimizes Ln(π, W ) is
equivalent to an LP, then gn(W ) equals the average cost of the
CMDP. Let Xn(W ) and An(W ) denote the average AoI and
the average scheduling probability of sensor n, respectively.
Let {yn,W

x,q } be the solution of sensor n’s LP problem (19) with
multiplier W , function gn(W ) can be computed as follows:

gn(W ) = Xn(W ) + WAn(W ), (25a)

where Xn(W ) =
Xmax∑
x=1

Q∑
q=1

xμn,W
x,q , (25b)

An(W ) =
Xmax∑
x=1

Q∑
q=1

yn,W
x,q . (25c)

According to [39], let W ∗ be the supreme Lagrange mul-
tiplier such that policy π(W ) that minimizes the Lagrange
function (8) satisfies the relaxed bandwidth constraint, i.e.,

W ∗ = sup{W |
N∑

n=1

An(W ) ≤M}.

If the bandwidth consumed by policy π(W ∗) satisfies∑N
n=1 An(W ) = M , i.e., π(W ∗) consumes an average

bandwidth M . Then the optimum solution π∗
R to problem 2 is

just π(W ∗). Otherwise, π∗
R is a mixture of two policies π1

and π2, which can be obtained by:

π1 = lim
W→W∗−

π(W ), π2 = lim
W→W∗+

π(W ). (26)
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To search for policy π(W ∗), π1 and π2, we apply the subgra-
dient descent method. Let W (k) be the Lagrange multiplier
used in the kth iteration.

We start with W (0) = 0, if
∑N

n=1 An(W (0)) − M ≤ 0,
then scheduling does not have to consider the relaxed band-
width constraint. The minimum AoI performance to the
RB&P-Constrained AoI problem and the lower bound on the
AoI performance to the primal B&P-Constrained AoI can be
computed simply through:

AoILB = AoI∗R = g(0). (27)

Otherwise, we adopt an iterative algorithm update. Accord-
ing to [37, Eq. 6.1.1], the subgradient at W (k) can be computed
by:

dW g(W (k)) =
N∑

n=1

An(W (k))−M. (28)

By choosing a set of stepsizes γk similar to [15], the multiplier
for the k-th iteration can be computed by:

W (k) = W (k−1) + γkdW g(W (k−1)). (29)

The iteration ends until both |W (k) − W (k−1)| < ε and∑N
n=1 An(W (k)) ≤ M are satisfied. Suppose the algorithm

terminates at the K-th iteration. If
∑N

n=1 An(W (K)) = M ,
then π∗

R = π(W (K)). Otherwise, we proceed to find
two policies π1 and π2 that constitutes π∗

R in (26). Let
Wl and Wu be two Lagrange multipliers chosen from
sequence W (k),

Wl =arg max
W (k)

N∑
n=1

An(W (k)), s.t.
N∑

n=1

An(W (k)) ≤M,

(30a)

Wu = arg min
W (k)

N∑
n=1

An(W (k)), s.t.
N∑

n=1

An(W (k)) ≥M.

(30b)

Let Ml =
∑N

n=1 An(Wl) and Mu =
∑N

n=1 An(Wu) be the
total bandwidth used with respect to minimize the function (7).
Suppose {μn,l,yn,l} is the optimizer to sensor n’s LP problem
(19a) with multiplier Wl and {μn,u,yn,u} is the solution with
multiplier Wu. To satisfy the relaxed bandwidth constraint,
the optimum distribution {μn,∗,yn,∗} of the relaxed problem
is a linear combination of {μn,l,yn,l} and {μn,r,yn,r}, which
can be computed as follows:

{μn,∗,yn,∗}=ν{μn,l,yn,l}+(1− ν){μn,u,yn,u}, (31)

where the mixing coefficient ν can be computed by:

ν =
Mu −M

Mu −Mr
.

Consider the structure of each Decoupled P-Constrained
Cost problem, the optimum scheduling strategy π∗

R for the
RB&P-Constrained is then constructed as follows:

In each slot t, the central controller observes the current
AoI xn(t) and channel state qn(t) of sensor n, a scheduling

decision sn(t) = 1 is then made with probability ξn,∗
xn(t),qn(t),

which is computed as follows:

ξn,∗
x,q =

⎧⎨
⎩

1, ξn,∗
x−1,q = 1 or μn,∗

x,q = 0 or x ≥ Xmax;
yn,∗

x,q

μn,∗
x,q

, otherwise.

(32)

The algorithm flow chart to obtain ξn,∗
x,q is finally provided

as follows.

Algorithm 1 Determination of the Optimum Scheduling Prob-
abilities ξn,∗

x,q to the RB&P-Constrained AoI Problem

1: initialization: start with W (0) = 0, solve the corresponding
LP (20) for each sensor n and compute An(W (0)),
denote the optimizer as {μn,yn}.

2: k ← 0, Ml ← 0, Mu ← 2M, {μn,l,yn,l} =
{μn,u,yn,u} = {μn,yn}

3: if
∑N

n=1 An(W (0))−M ≤ 0 then  Relaxed Bandwidth
Constraint is satisfied

4: {μn,∗,yn,∗} ← {μn,yn}, ∀n
5: else  Search for the Lagrange Multiplier
6: repeat
7: k← k + 1
8: dW g(W (k−1))←∑N

n=1 An(W (k−1))−M
9: W (k) ←W (k−1) + γkdW g(W (k−1))

10: Solve the corresponding LP (19a)-(19g) for each
sensor n and compute An(W (k)), denote the opti-
mizer as {μn,yn}

11: if Ml <
∑N

n=1 An(W (k)) ≤M then
12: Ml ←

∑N
n=1 An(W (k))

13: {μn,l,yn,l}←{μn,yn}
14: else if M <

∑N
n=1 An(W (k)) ≤Mu then

15: Mu ←
∑N

n=1 An(W (k))
16: {μn,u,yn,u}←{μn,yn}
17: until |W (k)−W (k−1)| < ε and

∑N
n=1 An(W (k)) ≤M .

18: Compute Wl, Wu and Ml, Mu, compute ν ← Mu−M
Mu−Mr

 Strategy Randomization
19: {μn,∗,yn,∗} ← ν{μn,l,yn,l}+ (1− ν){μn,u,yn,u}
20: Compute {ξn,∗

x,q } according to (32)

Denote AoILB be the AoI lower bound to the primal B&P-
Constrained AoI and let AoI∗R be the expected average AoI
following policy π∗

R, which can be written out as a function
of the optimizer {μn,∗,yn,∗}. According to the discussion in
Section IV-A, the average AoI by following π∗

R formulates the
lower bound to Problem 1. Hence,

AoILB = AoI∗R =
1
N

N∑
n=1

Xmax∑
x=1

Q∑
q=1

xμn,∗
x,q . (33)

B. Multi-Sensor Opportunistic Scheduling With Hard
Bandwidth Constraint

In this part we construct a truncated policy π̃ based on
optimal scheduling policy for each of the decoupled sensor
and solve the primal B&P-Constrained AoI problem. Recall
π∗

R is the optimum scheduling strategy to the relaxed problem
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and sn(t) is the corresponding scheduling decision for sensor
n in slot t. Denote Ω(t) = {n|sn(t) = 1} as the set of sensors
that are scheduled under policy π∗

R. The scheduling decision
un(t) under hard bandwidth constraint is then carried out as
follows:

• If |Ω(t)| ≤ M , i.e., the total number of sensors that
currently wait to send updates is less than or equal to
the bandwidth resource available, then the scheduling
decision un(t) = 1, ∀sn(t) = 1.

• Otherwise if |Ω(t)| > M , the central controller selects a
subset of M(t) ⊂ Ω(t), |M(t)| = M sensors from Ω(t)
randomly and schedules them to send updates. Those
sensors that are in set Ω(t) but not selected in M(t) is
not scheduled because of limited bandwidth constraint.

Theorem 2: With the proportion of scheduling resources
M
N = θ keeps a constant, the deviation from the optimal
scheduling policy for a network with N sensors under the
proposed truncated policy π̃ is O( 1√

N
). Thus, with N → ∞

and M
N = θ, the proposed truncated policy is shown to be

asymptotically optimal for the primal B&P-Constrained AoI
problem with hard bandwidth constraint.
The detailed proof will be provided in Appendix C.

VI. SIMULATIONS

In this section, we provide simulation results to demonstrate
the performance of the proposed scheduling policy. We con-
sider a Q = 4 states channel with the following evolution
matrix, where the j-th element on the i-th row denotes pij ,
i.e., the probability that channel state evolves from i to j:

P =

⎡
⎢⎢⎣

0.4 0.3 0.2 0.1
0.25 0.3 0.25 0.2
0.2 0.25 0.3 0.25
0.1 0.2 0.3 0.4

⎤
⎥⎥⎦ .

We assume all the sensors have the same above evolving
channels and the steady state distribution of channel states
is η = [0.2368, 0.2632, 0.2632, 0.2368]. The following sim-
ulation results are obtained over a consecutive of T = 106

slots.
Notice that from [18], the optimal policy to minimize AoI

performance when all the sensors are identical is a greedy
policy that selects the sensor with the largest AoI. If there is no
packet-loss in the network, the greedy policy is equivalent to
round robin, which requires a minimum power consumption of
ERR = M

N

∑Q
q=1 ηqω(q) for each sensor. In the following sim-

ulations, we measure power consumption constraint through
ratio ρn = En/ERR. Small ρ indicates that the corresponding
sensor has a smaller amount of average power budget.

A. Average AoI Performance

Fig. 4 studies average AoI performance as a number of sen-
sors with fixed bandwidth M = {2, 5}. The power constraint
factor is taken from [0.2, 1.6] and ρn = 0.2 + 1.4

N−1(n − 1).
Denote Cn(t) as the total power consumed by sensor n until
slot t and let R(t) = {n|Ent − Cn(t) ≥ 0} be the set
of sensors that has enough power to support transmission
in slot t. We compare the proposed policy with a naive

Fig. 4. Average AoI performance as a number of sensors N , M = {2, 5}.

Fig. 5. Asymptotic average AoI performance as a number of sensors N ,
available bandwidth is chosen by M/N = { 1

5
, 1

8
}.

greedy policy that selects no more than M sensors with the
largest AoI from set R(t) for scheduling. As can be seen
from the figure, the proposed truncated scheduling achieves
a close average AoI performance to the lower bound. While
the available bandwidth keeps a constant but the number
of sensors increases, the proposed truncated policy achieves
nearly 40% average AoI decrease for M = {2, 5} in a network
with N = 50 sensors.

Fig. 5 studies the asymptotic average AoI performance as
a number of sensors, with M

N = { 1
5 , 1

8}. The power constraint
of each sensor is selected by ρn = 0.2 + 1.4

N−1 (n − 1).
As can be observed from the figure, the difference between the
proposed strategy and the lower bound decreases with N . The
asymptotic performance is also verified in simulation results.

B. AoI-Power Trade-off and Threshold Structure

Fig. 6 plots the average AoI-power tradeoff curves for
different number of sensors N = {4, 8, 16}, each sensor has
identical channel fading characteristic and the same power
constraint factor ρ. We assume M = 1, i.e., only one sensor
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Fig. 6. Average AoI-power tradeoff curves for different number of identical
sensors.

can be scheduled in each slot. Since all the sensors are
identical, it can be concluded that the average scheduling
probability of each sensor is smaller than 1

N . Hence, we can fix
W = 0 and add another constraint on the activation probability
to the LP (19),

Xmax∑
x=1

Q∑
q=1

yx,q ≤ 1
N

.

By solving this LP problem, we can obtain a lower bound on
AoI performance for scheduling multiple identical power con-
strained sensors. The optimal average AoI performance with
no power consumption constraint is plotted in green dashed
lines. The yellow solid lines depict AoI obtained by solving
the relaxed scheduling problem and red squares represent the
average AoI performance obtained following the proposed
truncated scheduling policy. From the figure, the average AoI
following the proposed truncated scheduling policy is close to
the AoI lower bound. The average AoI performance decreases
monotonically when the power constraint factor increases.
When ρ is near 1, indicating each sensor tends to have enough
power to carry out a round robin strategy, AoI performance
obtained by the proposed truncated scheduling policy and
the AoI lower bound also approach the optimal performance
by round robin where there is no power constraint. When ρ
approaches zero, the average AoI increases dramatically and
approaches infinity.

Inspired by the AoI decrease observed in Fig. 4, we then
study the average AoI performance of different power con-
strained sensor in Fig. 7 and visualize the scheduling decisions
in Fig. 8. We consider a network with N = 8 sensors and
M = 2, each sensor has a power constraint factor ρn = 0.2n.
The average AoI performance of sensor n obtained by the
proposed algorithm is denoted by xn. As is observed from
Fig. 7, the proposed algorithm brings about 40% AoI decrease
to the first two sensors, which have very limited power
for transmission (ρ1 = 0.2, ρ2 = 0.4). The AoI deduction
of the proposed algorithm is achieved partly through wider
bandwidth allocation and more reasonable transmission design

Fig. 7. Average AoI performance of each power constrained sensor in a
network with N = 8 sensors and M = 2, ρn = 0.2n. The average AoI of
sensor n is denoted by xn.

for sensors that have very limited power. For sensors that have
enough power, i.e., sensor 7 and 8 with ρ7 = 1.4, ρ8 = 1.6, our
proposed policy guarantees timely updates from those sensors
and thus they show similar AoI performance in simulations.

We visualize the scheduling policy for some represen-
tative sensors in Fig. 8, where (a)-(d) demonstrate sensor
{1, 2, 7, 8} with power constraint ρ = {0.2, 0.4, 1.4, 1.6},
respectively. The optimal scheduling decision for single sensor
with power consumption constraint ρ = {0.2, 0.4, 1.4, 1.6} but
no bandwidth constraint are plotted in (e)-(h). In Fig. 8(a)
and (b), the transmission power for each sensor is very
limited, the scheduling threshold τq is an increasing sequence
of channel state q. Moreover, the threshold of each chan-
nel in Fig. 8(b) is smaller than the corresponding threshold
in Fig. 8(a), indicating that transmission is more likely to
happen as a result of more available transmission power.
In (a) and (b), the difference between the activation thresh-
olds τq for each sensor is smaller compared with the differ-
ence between thresholds illustrated in (e) and (f), indicating
the scheduler tries to maintain total probability of sensor
scheduling small in order to satisfy the bandwidth constraint
of the entire network. Thus, scheduling strategy for a single
power constrained sensor seeks to exploit a good channel
state, while trying to keep AoI small and use less bandwidth.
If unfortunately the channel state is always bad, he will
keep waiting until the AoI is large or the channel state
turns good. By comparing Fig. 8(a) and (b), the scheduler
tries to make full use of the transmission power through a
refinement of activation thresholds. By comparing Fig. 8(c)
and (g), (d) and (h), when the sensor is equipped with enough
power (e.g., ρ = {1.4, 1.6}), the proposed policy does not
use up all the power and all the channel states have the
same activation threshold. The threshold is set in order to
satisfy the relaxed bandwidth constraint. The bandwidth saved
compared with the greedy algorithm is then allocated properly
to schedule power constrained sensors and hence achieved
significant AoI decrease for those power constrained sensors.
Thus, for a network with different power constrained sensors,
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Fig. 8. (a)-(d): Scheduling decisions for sensors with different power constraint ρn in a network with N = 8 sensors and M = 2. (e)-(h): Scheduling
decisions for single sensor with different power constraint ρn and with no bandwidth constraint.

the scheduling strategy for different sensors varies according
to their power constraints. The scheduler seeks good channels
to carry out scheduling decisions for those power constrained
sensors, while sensors supported by enough power are updated
in a timely manner that can satisfy bandwidth constraint.

VII. CONCLUSION

In this work, we investigate the problem of age minimization
scheduling in power constrained wireless networks, where
communication channels are modeled to be ergodic Markov
chains and different level of transmission power is used to
ensure successful transmission. We decouple the multi-sensor
scheduling problem into a single sensor level constrained
Markov decision process. We reveal the threshold structure
of the optimal stationary randomized policy for the single
sensor and convert the optimal scheduling problem into a
linear programming. A truncated scheduling policy that sat-
isfies the hard bandwidth constraint is proposed based on
the solution to each decoupled sensor. It is revealed that
when the power of the sensor is very limited, the scheduler
seeks to exploit a good channel state while keeping the
information fresh. Sensors equipped with enough power are
updated in a timely manner that can satisfy the hard bandwidth
constraint.

The network model considered in this work is a very
simplified one. In the future, we will extend the work to
more general scenarios. Our method generalizes well when
the update packet of each sensor arrive stochastically [43]
or packet transmission experiences random packet loss [42].
We will also study scheduling strategy under non-orthogonal
multiple access scenario similar to [41].

APPENDIX A
PROOF OF LEMMA 1

Proof: The threshold structure of the optimal policy that
minimizes the average cost of (13) is proved by induction
from the α-discounted cost problems, where 0 < α < 1 is a
discount factor. Given state (x, q), the expected α-discounted
cost starting from the state over infinite horizons by following

policy π can be computed:

Jα,π(x, q) = lim
T→∞

Eπ

[
T∑

t=0

αt[CX(x(t), q(t), s(t))

+ λCQ(x(t), q(t), s(t))]|(x(0)=x, q(0)=q)

]
.

(34)

Let Vα(x, q) = minπ∈ΠNA Jα,π(x, q) be the minimum
expected total discounted cost starting from state (x, q). Then,
the minimum total discounted cost will satisfy the following
equation:

Vα(x, q) = min{CX(x, q, 0)+α

Q∑
q′=1

pq,q′Vα(x + 1, q′),

CX(x, q, 1)+λCQ(x, q, 1)+α

Q∑
q′=1

pq,q′Vα(1, q′)}.

(35)

To verify the threshold structure of the optimal policy to the
total discounted cost problem, we will introduce the following
characteristic of Vα(x, q):

Lemma 2: For given discount factor α and fixed channel
state q, the value function Vα(·, q) increases monotonically
with x.

The details of the proof will be given in Appendix B.
With this lemma, let us now verify the threshold structure.
Denote Δ(x, q) to be the difference in value function by
taking a = {0, 1}, i.e.,

Δ(x, q) = CX(x, q, 0)+α

Q∑
q′=1

pq,q′Vα(x + 1, q′)

−CX(x, q, 1)−λCQ(x, q, 1)−α

Q∑
q′=1

pq,q′Vα(1, q′)

= α

Q∑
q′=1

pq,q′ (Vα(x + 1, q′)−Vα(1, q′))

− (λω(q) + W ). (36)
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Denote s∗α(x, q) be the optimum solution that achieves
the minimum discounted cost Vα(x, q) at state (x, q). If the
optimal policy s∗α(x, q) = 1, i.e, it is better to sched-
ule the sensor at state (x, q), by substituting (11a) into
Δ(x, q) ≥ 0, we can obtain the following inequality:

α

Q∑
q′=1

pq,q′ (Vα(x + 1, q′)− Vα(1, q′))− (λω(q) + W ) ≥ 0.

(37)

According to Lemma 2, the value function Vα(·, q) is
monotonic increasing. Hence, for any x′ > x, Δ(x′, q) can
be lower bounded by:

Δ(x′, q)

= α

Q∑
q′=1

pq,q′ (Vα(x′ + 1, q′)−Vα(1, q′))−(λω(q) + W )

(a)

≥ α

Q∑
q′=1

pq,q′ (Vα(x + 1, q′)−Vα(1, q′))−(λω(q)+W )≥0,

(38)

where inequality (a) is obtained because V (·, q) is increasing.
The positivity of Δ(x′, q) implies that for state x′ > x,
the optimal policy for state (x′, q) is to schedule the sensor.
If at state (x, q) the optimal policy is to be passive, then for
state x′ < x, the optimal policy satisfies s∗(x′, q) = 0 can be
verified similarly.

Moreover, for any state q, according to the Bellman equa-
tion, the difference between the expected total discounted cost
for keeping idle and being scheduled can be computed by

(CX(x, q, 0) + αE[Vα(x + 1, q′)])
− (CX(x, q, 1) + αE[Vα(1, q′)])

≥ x + α(x + 1)− (x + αE[Vα(1, q′)] + W + λω(q))
= αx + α− αE[Vα(1, q′)]−W − λω(q), (39)

which increases linearly with x. Hence for any channel state,
there must be some state such that inequality (37) is satisfied.
This suggests that the optimal solution cannot keep passive
all the time. Thus, there exists a threshold τq for any state
x > τq , the optimal policy s∗α(x, q) = 1 and for state x < τq ,
s∗α(x, q) = 0.

Finally, we generalize the threshold structure of s∗α(x, q) to
the optimal strategy of the average cost minimization problem.
Take a sequence of discount factors such that limk→∞ αk = 1.
Then according to [38], the optimal policy s∗αk

for minimiz-
ing the total αk-discounted cost converges to the policy for
minimizing the time-average cost, which verifies the threshold
structure of the optimal policy s∗ as stated in Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

Proof: In this section, we aim at verifying the monotonic
characteristic of the discounted value function. The value of
Vα(x, q) can be computed through value iteration regarding
the (35). Denote V

(k)
α (x, q) to be the value function obtained

after the kth iteration, the monotonic characteristic is proved
by induction.

Suppose sequence V
(k)
α (1, q), V (k)

α (2, q), · · · is non-
decreasing. With no loss of generality, suppose x1 < x2.
According to the one step cost, we have:

CX(x1, q, s) < CX(x2, q, s), CQ(x1, q, s) = CQ(x2, q, s).
(40)

Denote J
(k)
α,s(x, q) to be the expected total discounted cost if

take action s in the kth iteration. Then we have the following
inequality:

J
(k)
α,0(x1, q)

= CX(x1, q, 0) + α

Q∑
q′=1

pq,q′V (k)
α (x1 + 1, q′)

(a)
< CX(x2, q, 0) + α

Q∑
q′=1

pq,q′V (k)
α (x2 + 1, q′)

= J
(k)
α,0(x2, q), (41)

where inequality (a) is obtained because of the monotonic
characteristic of V

(k)
α (·, q). Similarly, we will have the con-

clusion that J
(k)
α,1(x1, q) < J

(k)
α,1(x2, q). Notice that the value

function obtained in the (k + 1)th iteration is obtained by:

V (k+1)
α (x, q) = min

s
J (k)

α,s(x, q),

and for any s, J
(k)
α,s(x1, q) < J

(k)
α,s(x2, q). Thus, the value

function V
(k+1)
α (x1, q) < V

(k+1)
α (x2, q). By letting k → ∞,

the value function V
(k)
α (x, q) → Vα(x, q). Hence, Vα(·, q) is

monotonic increasing.

APPENDIX C
PROOF OF THEOREM 2

Proof: Recall that π∗
R is the optimum policy to the RB&P-

Constrained AoI minimization problem, whose expected
AoI formulates the lower bound to the Primal B&P-
Constrained problem. We verify the asymptotic optimal per-
formance of the proposed truncated policy π̃ by comparing it
with π∗

R.
First, considering that π∗

R satisfy the relaxed constraint,
the average number of sensors that wait to send updates by
following policy π∗

R can then be bounded:

Ω = E[|Ω(t)|] ≤M. (42)

According to Lemma 1 and Corollary 2, the optimum policy
to each decoupled single-sensor optimization problem pos-
sesses a threshold structure. Let Γn = maxq τn,q −minq τn,q

be the difference between the largest and the smallest schedul-
ing thresholds of sensor n in different channel states. Suppose
in slot t, sn(t) = 1 but sensor n is not scheduled. This
phenomenon implies xn(t) ≥ minq τn,q . If the sensor is
still not scheduled for Γn consecutive slots, then its AoI
xn(t + Γn) ≥ maxq τn,q . Recall that M/N = θ, and the
probability that a sensor with sn(t) = 1 is not scheduled by
policy π̂ can be computed by |Ω(t)|−M

|Ω(t)| ≤ 1 − θ. Since for
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t′ ≥ t + Γn, we have sn(t′) = 1 and with probability no
more than (1− θ) the sensor n is still not chosen to schedule
in slot t′. Thus the probability that sensor n that should be
scheduled in slot t but is not in the next consecutive t′ slots is
upper bounded by (1 − θ)(t

′−Γn)+ , where (·)+ = max{·, 0}.
Moreover, if the sensor is not scheduled in the consecutive t′

slots, policy π̃ will cause an extra AoI growth of no more than
t′xn(t) compared with policy π∗

R.
Next, we upper bound the effect of truncating in each slot

by introducing a modified version of the truncated strategy
π̂∗

R. Based on the relaxed scheduling strategy π∗
R, when

|Ω(t)| > M , the new truncated strategy π̂∗
R is designed

by: instead of not scheduling a sensor because of limited
bandwidth constraint, schedule it as π∗

R, but add a penalty∑∞
t′=0(1 − θ)(t

′−Γn)+xn(t) = (Γn + 1
θ )xn(t) on the total

AoI. Notice that the M sensors is chosen randomly, then in
slot t, if |Ω(t)| > M , the expected extra cost can be upper
bounded by:

�|Ω(t)|>M

N∑
n=1

(
Γn +

1
θ

)
xn(t)

|Ω(t)| −M

|Ω(t)|

≤ �|Ω(t)|>M

N∑
n=1

(
Γn +

1
θ

)
xn(t)

|Ω(t)| −M

M
. (43)

otherwise if |Ω(t)| ≤M there is no extra cost.
Notice that the AoI obtained by π̂∗

R will not decrease
compared with π̃. Let xn(t) be the AoI obtained by π∗

R and
�(·) be the indicator function, then the difference between
J(π̃) and J(π∗

R) can be upper bounded as follows:

(J(π̃)− J(π∗
R))

≤ (J(π̂∗
R)− J(π∗

R))

=
1

NT
Eπ∗

R

[
T∑

t=1

�|Ω(t)|>M

(
N∑

n=1

(
Γn +

1
θ

)

× xn(t)
|Ω(t)| −M

M

)]

=
1

NT
Eπ∗

R

[
T∑

t=1

(
N∑

n=1

(
Γn +

1
θ

)

× xn(t)
(|Ω(t)| −M)+

M

)]

≤ maxn Γn + 1
θ

MNT
Eπ∗

R

[
T∑

t=1

N∑
n=1

xn(t) (|Ω(t)| −M)+
]

(a)

≤ maxn Γn + 1
θ

MNT
Eπ∗

R

[
T∑

t=1

N∑
n=1

xn(t)
(|Ω(t)| − Ω

)+]

(b)

≤ maxn Γn + 1
θ

MNT
Eπ∗

R

[
T∑

t=1

N∑
n=1

xn(t)
∣∣|Ω(t)| − Ω

∣∣]

(c)

≤ maxn Γn + 1
θ

MNT
Eπ∗

R

[
T∑

t=1

N∑
n=1

max
q

τn,q||Ω(t)| − Ω|
]

(d)
=

(maxn Γn + 1
θ )
∑N

n=1 maxq τn,q

θN2

×Eπ∗
R

[
1
T

T∑
t=1

||Ω(t)| − Ω|
]

, (44)

where inequality (a) is because inequality (42) and (b) is
because (·)+ ≤ | · |. Inequality (c) is obtained because follow-
ing the relaxed strategy π∗

R, each decoupled sensor has a set of
activation thresholds, hence the AoI xn(t) cannot exceeds the
largest thresholds maxq τn,q . Equality (d) is because M = Nθ.

Finally, according to [40], the expectation of |Ω(t) − Ω|
satisfies:

Eπ∗
R
[||Ω(t)| − Ω|] = O(

√
N),

which implies:

Eπ∗
R

[
1

θNT

T∑
t=1

||Ω(t)| − Ω|
]

= O
(

1√
N

)
. (45)

Notice that the for sensors with fixed power constraint En,
the difference of threshold structure Γn does not grow with
the number of sensors in the network N . In addition, M

N = θ
suggests the available bandwidth M will grow with the number
of sensors N , thus the thresholds maxq τn,q will not grow
with N . As a result, we will have the following upper bound:

J(π̃)− J(π∗
R) = O

(
1√
N

)
. (46)

Considering that J(π∗
R) is lower bounded by the perfor-

mance of round robin policy J(πRR) ≥ 1
2 ( N

M + 1), which has
no power consumption constraint. With N

M = 1/θ is a constant
and let N →∞, we can lower bound J(π∗

R) by:

J(π∗
R) ≥ J(πRR) =

1
2

(
1
θ

+ 1
)

. (47)

Finally, the asymptotic optimum performance of the proposed
policy π̃ can be verified:

J(π̃)− J(π∗
R)

J(π∗
R)

= O
(

1√
N

)
. (48)
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