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Abstract—In this paper, we study how to collect fresh data
in time-varying networks with power constrained users. We
measure data freshness from the perspective of the central
controller by using the metric Age of Information, namely the
time elapsed since the generation time-stamp of the freshest
information. We wonder what is the minimum AoI perfor-
mance the network can achieve and how to design scheduling
algorithms to approach it. To answer these questions when
scheduling decisions are restricted to bandwidth constraint, we
first decouple the multi-user scheduling problem into a single
user constrained Markov decision process (CMDP) through
relaxation of the hard bandwidth constraint. Next we exploit
the threshold structure of the optimal policy for the decoupled
single user CMDP and obtain the optimum solution through
linear programming (LP). Finally, an asymptotic optimal trun-
cated policy that can satisfy the hard bandwidth constraint
is built upon the optimal solution to each of the decoupled
single-user sub-problem. The performance is verified through
simulations. Our investigation shows that to obtain a small AoI
performance, the scheduler exploits good channels to schedule
users supported by limited power. Users equipped with enough
transmission power are updated in a timely manner such that
the bandwidth constraint can be satisfied.

Index Terms—Age of Information, Cross-layer Design, Op-
portunistic Scheduling, Constrained Markov Decision Process

I. INTRODUCTION

Data freshness is gaining increasing importance in real-
time services like real time positioning, monitoring and
industrial control. To support these applications, users that
track the corresponding physical phenomena are scheduled
to send updates to the central controller via time-varying
wireless channels. However, the bandwidth and interference
constraint, the limited power resource of each user and the
time varying nature of wireless channels create obstacles in
scheduling strategy design. Moreover, traditional quality of
service (QoS) guarantees such as latency and throughput have
their limitations and may not guarantee a good data fresh-
ness performance. Thus, it is of great importance to revisit

—————–
Proof details are provided in our online report [1].

sampling and scheduling strategies in wireless networks in
order to obtain more fresh information.

A recently proposed metric, the Age of Information (AoI)
[2], namely the time elapsed since the generation time-stamp
of the freshest information stored at the receiver, has been
widely adopted to measure data freshness in communication
networks. Optimizing and analyzing AoI performance in
point to point communication systems with power consump-
tion constraint have been studied [3]–[9]. The optimal sam-
pling and transmission strategy in the presence of queueing
delay [5] and transmission failure [8] are shown to possess
a threshold structure, i.e., sampling and update transmission
occur when information at the receiver is no longer fresh
while the update packets, if successfully received, can sig-
nificantly reduce data staleness.

AoI performance and optimization in multi-user network
have been studied in [10]–[18]. When all the users in the
network are identical and update packets can be generated at
will, a greedy policy that samples and schedules to transmit
the user with the largest AoI is shown to be optimal [10].
When there is no packetloss in the network, this greedy
policy is equivalent to the round robin strategy, which is
shown to be order optimal when update packets can not
be generated at will and arrive randomly [16]. In [11],
it is revealed that users with relatively bad channel states
are updated less frequently. Scheduling to minimize AoI
performance in networks with time-varying channels are
studied in [13], [14], where centralized and decentralized
policies to minimize the average peak age of information
(PAoI) are proposed. However, the channel model considered
in these works have two states and no power adaptation
strategy is used to combat wireless fading effect.

To combat the aforementioned fading effect, transmission
power and bandwidth limitations, which appear at different
layers of communication networks, cross-layer control strate-
gies have been studied in [19]–[26] to minimize delay or
maximize throughput. In [24], a Lazy scheduling policy that
assigns scheduling decision based on the queue backlog is
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proposed. Considering time-varying fading nature of wireless
channels, rate and power adaptation strategy is proposed
in [25]. To minimize queueing delay in a point to point
time-varying channel with average power constraint on the
transmitter, a probabilistic scheduling strategy is proposed in
[21], [22]. Although cross-layer strategies have been studied
in delay minimization, throughput and utility maximization,
the design to optimize Age of Information has not been very
well studied.

To fill this gap, in our paper, we consider a single controller
schedules multiple users to transmit updates in a wireless
network. Similar to the cross-layer framework [27], the
wireless link of each user is modeled to be multi-state time-
varying and different level of transmission power is used
in different channel state to guarantee success transmission.
The overall objective is to minimize the expected average
AoI performance when network is restricted to bandwidth
constraint and scheduling decisions have to satisfy the power
constraint of each user. Inspired by [26], we first relax
the hard bandwidth constraint and decouple the multi-user
scheduling problem into a single user constrained Markov
decision process (CMDP). Then we propose a truncated
scheduling policy that can achieve an asymptotic optimal
average AoI performance over the entire network.

The remainder of this paper is organized as follows.
The network model and the data freshness metric, AoI, are
introduced in Section II. In Section III, we decouple the
multi-user scheduling problem into single-user level CMDP
and search for the optimal policy through LP. In Section IV,
a truncated multi-user scheduling policy is proposed. Section
V evaluates and analyzes the performance of the proposed
algorithm and Section VI draws the conclusion.

Notations: Vectors and matrices are written in boldface
lower and upper letters. The probability of event A given
condition B is denoted as Pr(A|B). The expectation operation
with regard to random variable X is denoted as EX [·]. The
cardinality of set Ω is denoted as |Ω|.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a network with a central controller collecting
time-sensitive data from N users via wireless links. Let the
time be slotted, i.e., t = {1, · · · , T}. The central controller
schedules users to transmit update at the beginning of each
slot over time-varying fading channels. Let the indicator
function un(t) to be a scheduling decision. If un(t) = 1,
then user n is scheduled to transmit update packet during
slot t and the packet will be received successfully by the
end of the slot. Due to the limited bandwidth resource, no
more than M users can be scheduled simultaneously, which
casts the following restrictions on un(t):

N∑
n=1

un(t) ≤ M, for all t. (1)

We assume that the communication channel between the
central controller and each user experiences an independent
Q-state block fading, where Q is a positive integer. The
channel state remains constant during a slot but follows an
i.i.d fading process across the slots. Let qn(t) ∈ {1, · · · , Q}
be a random variable that captures the channel state of user
n during slot t, large qn(t) indicates that link n is more
noisy and goes through stronger fading during slot t. Let the
probability mass function of qn(t) be:

Pr(qn(t) = q) = ηn,q, (2)

where ηn,q ∈ [0, 1]. For each user n, the sum of ηn,q satisfies:
Q∑

q=1

ηn,q = 1. (3)

When user n is scheduled to transmit updates in a slot and
the corresponding channel state is q, in order to guarantee
successful transmission, it will consume ω(q) units of energy.
To combat the effect of channel fading, more power will
consumed when the channel is more noisy, thus ω(1) <
· · · < ω(Q) is an increasing sequence. The transmitted
packet will be successfully received by the central controller
at the end of the slot. For a typical scheduling decision
un(π) = [un(1), · · · , un(T )] related to user n, the average
power consumed in T consecutive slots can be computed as
follows:

En(un(π)) =
1

T

T∑
t=1

un(t)ω(qn(t)). (4)

B. Age of Information
We measure data freshness of the central controller by

using the metric Age of Information(AoI) [2]. By definition,
the AoI is the time elapsed since the generation time-stamp
of the freshest information at the receiver.

Let xn(t) be age of information of user n at the beginning
of slot t. In this work, it is equivalent to the number of
slots elapsed since the last delivery to user n. If un(t) = 1,
fresh information about user n will be received by the central
controller at the end of slot t, thus xn(t+1) = 1; otherwise,
since there is no update packet received from user n during
slot t, xn(t) increases linearly and xn(t + 1) = xn(t) + 1.
The evolution of AoI xn(t) is organized as follows:

xn(t+ 1) =

{
1, un(t) = 1;

xn(t) + 1, un(t) = 0.
(5)

C. Problem Formulation
For a given network setup with N users and channel states

distributions {ηn,q}, we measure the data freshness of the
entire network by following policy π in terms of the expected
average AoI of all users at the beginning of each time slot
for a consecutive of T → ∞ slots, which is computed as
follows:

J(π) = lim
T→∞

{ 1

NT
Eπ

[
T∑

t=1

N∑
n=1

xn(t)|x(0)
]
}, (6)
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where the vector x(t) = [x1(t), x2(t), · · · , xN (t)] ∈ N
N

denotes the AoI of all users at the beginning of slot t. In this
work, we assume that all the users have been synchronized
initially, i.e., x(0) = 1 and omit it henceforth.

Denote ΠNA to be the class of non-anticipated policies,
i.e., scheduling decisions are made based on current and past
AoI, channel states as well as their probability distributions,
while no future information or prediction about channel
states are exploited. The central controller is fully aware
of the average power constraints of each user and aim at
designing policy π ∈ ΠNA in order to minimize the average
expected AoI of the entire network. The bandwidth and
power constrained AoI (B&P Constrained AoI) minimization
problem is organized as follows:

Problem 1 (B&P-Constrained AoI):

π∗ = arg min
π∈ΠNA

lim
T→∞

{ 1

NT
Eπ

[
T∑

t=1

N∑
n=1

xn(t)

]
}, (7a)

s.t.
N∑

n=1

un(t) ≤ M, ∀t, (7b)

lim
T→∞

1

T
Eπ

[
T∑

t=1

un(t)ω(qn(t))

]
≤ En, ∀n. (7c)

The hard bandwidth constraint (7b) in every slot t suggests
that the B&P-Constrained AoI problem is an intractable
integer programming problem. We tackle with this challenge
through the following approaches:

• Inspired by [20], [26], [28], we relax the hard bandwidth
constraint (7b) into a time-average constraint that allows
more than M users to be scheduled simultaneously.
Then the multi-user scheduling problem can be decou-
pled into single user CMDP.

• After solving the decoupled single user CMDP through
LP in Sec. III-D, in Sec. IV, we propose a truncated
scheduling policy that can satisfy the hard bandwidth
constraint (7b).

III. SCHEDULING BY USER-LEVEL DECOMPOSITION

In this section, we start by relaxing and decoupling
the B&P-Constrained AoI problem, then formulate the de-
coupled single user scheduling problem into a constrained
Markov decision process (CMDP). We exploit the threshold
structure of the optimal stationary randomized policy and the
optimal solution is solved through linear programming (LP).

A. Single-User Level Decomposition

Let us first relax the hard constraint (7b) into an time-
average constraint, the problem of scheduling multiple power
constrained users with relaxed bandwidth constraint (RB&P-
Constrained AoI) can be organized as follows:

Problem 2 (RB&P-Constrained AoI):

π∗
R = arg min

π∈ΠNA
lim

T→∞
{ 1

NT
Eπ

[
T∑

t=1

N∑
n=1

xn(t)

]
}, (8a)

s.t.
1

T

T∑
t=1

N∑
n=1

un(t) ≤ M, (8b)

lim
T→∞

1

T
Eπ

[
T∑

t=1

un(t)ω(qn(t))

]
≤ En,∀n. (8c)

Next we establish the Lagrange function and place the
relaxed constraint into the objective function (7a) as follows:

L(π,W )= lim
T→∞

{ 1

NT
Eπ

[
N∑
n=1

T∑
t=1

(
xn(t)+Wun(t)− WM

N

)]
}.

(9)

For fixed W , the optimization problem (9) can then be
decoupled into N single user cost minimization problem with
average power consumption constraint. The objective of user
n is to develop a scheduling strategy πn such that under
power constraint Eq. (7c), the average overall cost incurred
by AoI and scheduling penalty can be minimized. The
decoupled single user power constrained cost minimization
problem is organized as follows:

Problem 3 (Decoupled P-Constrained Cost):

π∗
n = arg min

π∈ΠNA
Ln(π,W ),

where Ln(π,W ) = lim
T→∞

1

T
Eπ

[
T∑

t=1

xn(t) +Wun(t)

]
,

(10a)

s.t. lim
T→∞

1

T
Eπ

[
T∑

t=1

un(t)ω(qn(t))

]
≤ En.

(10b)

Since the primal relaxed problem (9) gets decoupled, we omit
the subscript n henceforth.

B. Constrained Markov Decision Process Formulation

The decoupled single-user scheduling problem can be
formulated into a CMDP that consists of a quadruplet
(S,A, Pr(·|·), C(·, ·)), each item is explained as follows:

• State Space: The state of a user at the beginning of slot
t is the current number of slots elapsed since the last
update and the channel state (x(t), q(t)).

• Action Space: There are two possible actions s ∈ A =
{0, 1}, where s(t) = 1 denotes updates from the user
is scheduled at the beginning of slot t, and s(t) = 0
represents that the user keeps idle and is not scheduled.
Notice that s(t) is different from scheduling decision
u(t), which has strict bandwidth constraint.

• Probability Transfer Function: The channel state
q(t) evolves independently of x(t), hence according
to Eq. (5), the probability transfer function from state
(x, q) is organized as follows:

Pr((x, q) → (x+ 1, q′)) = ηq′ , s = 0; (11a)
Pr((x, q) → (1, q′)) = ηq′ , s = 1. (11b)

• One-Step Cost: For given state (x, q), the one-step cost
by taking action s contains AoI growth and scheduling
penalty, which can be computed as follows:

CX(x, q, s) = x+Ws, (12a)
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while the one-step power consumption is:

CQ(x, q, s) = ω(q)s. (12b)

The objective of the decoupled CMDP problem is to
design a scheduling policy π such that under the aver-
age power constraint, 1

T Eπ

[∑T
t=1 CQ(x(t), q(t), s(t))

]
≤

E4, the overall cost containing both AoI and schedul-
ing penalty over infinite horizon can be minimized,
1
T Eπ

[∑T
t=1 CX(x(t), q(t), s(t))

]
.

C. Characterization of the Optimal Policy

In this part, we focus on exploiting the threshold structure
of the optimal policy. First we provide the formal definition
of a stationary randomized policy and stationary deterministic
policy:

Definition 1: Let ΠSR and ΠSD denote the class of station-
ary randomized and stationary deterministic policy, respec-
tively. Given observation (x(t) = x, q(t) = q), a stationary
randomized policy πSR ∈ ΠSR choose action s(t) = 1 with
probability measure ξx,q ∈ [0, 1] for all t. A stationary
deterministic policy πSD ∈ ΠSD selects action s(t) = a(x, q),
where a(·) : (x, q) → {0, 1} is a deterministic mapping from
state space to action space.

According to [29, Theorem 4.4], the optimal policy to the
above CMDP has the following property:

Corollary 1: An optimal stationary randomized policy
π∗ ∈ ΠSR exists for the decoupled single user power
constrained scheduling problem (3), and it is a mixture of no
more than two stationary deterministic policies πSD1, πSD2 ∈
ΠSD. Let λ be the weight of following stationary determin-
istic policy πSD1 and 1− λ be the weight of following πSD2.
Then the optimum policy is:

π∗ = λπSD1 + (1− λ)πSD2. (13)

Each of the deterministic policy can be obtained through
the Lagrangian primal-dual method [29]. Let λ ≥ 0 be the
Lagrange multiplier related to the average power constraint,
then the single user CMDP can be converted into an uncon-
strained MDP to minimize the following overall cost:

Problem 4 (Decoupled Unconstrained Cost):

π∗
ud = arg min

π∈ΠNA
lim

T→∞
1

T
Eπ[

T∑
t=1

(CX(x(t), q(t), s(t))

+λCQ(x(t), q(t), s(t)))]− λE
For given Lagrange multiplier λ, a stationary determin-

istic policy to minimize the above unconstrained cost ex-
ists. Moreover, there exits a differential cost-to-go function
V (x, q) that satisfies the following Bellman equation:

V (x, q) + γ = min{CX(x, q, 0) +

Q∑
q′=1

ηq′V (x+ 1, q′),

CX(x, q, 1) +

Q∑
q′=1

ηq′V (1, q′) + λCQ(x, q, 1)},

(14)

where γ is the average cost by following the optimal policy.
Next, we will prove the threshold structure of the stationary
deterministic policy for given λ, which will present insight
for the structure of the optimal stationary randomized policy
to solve the CMDP problem (3).

Lemma 1: The optimal stationary deterministic policy
for solving the Decoupled Unconstrained Cost minimization
problem with fixed λ possesses a dual threshold structure,
which is explained as follows:

1 For any channel state q, there exists a threshold τq , such
that when x ≥ τq , the optimal action s∗(x, q) = 1 and
when x < τq , s∗(x, q) = 0.

2 The set of threshold is non-decreasing, i.e., τ1 ≤ τ2 ≤
· · · ≤ τQ.

D. Probabilistic Scheduling Policy for Single User Case

Denote ξx,q to be the probability that the user is scheduled
to send updates with age x and channel state q. We aim at
finding a set of optimal transmission probability {ξ∗x,q} such
that total cost of AoI performance and scheduling penalty
for a single decoupled user can be minimized. From Sec.
III(C), a stationary randomized policy that solves Decoupled
P-Constrained Cost problem is a randomization between
two stationary deterministic policies [29], each of them can
be obtained by solving the Decoupled Unconstrained Cost
minimization problem, which is an unconstrained MDP. Con-
sidering the threshold structure of them and Eq. (13), it can
be concluded there exists set of non-decreasing thresholds
τq , for each state (x, q), if x ≥ τq , the stationary randomized
policy is to schedule the user, i.e., ξ∗x,q = 1. As an outcome,
for each of the decoupled single user problem, when x ≥ τQ,
the user will always be scheduled and the AoI x cannot
be larger than the largest threshold τQ. To find the optimal
policy, we choose a large Xmax that can guarantee Xmax ≥ τQ
in the following analysis.

Denote μ = [μ1, μ2, · · · , μXmax ]
T be the steady distribu-

tion of the user’s AoI, where μx denotes the probability that
x(t) = x. The probability transfer graph between the states
is plotted in Fig. 1. Let αx and βx denote the one step state
transition probability from x(t) = x to x(t+1) = x+1 and
from x(t) = x to x(t+ 1) = 1, respectively, i.e.,

αx = Pr(x(t+ 1) = x+ 1|x(t) = x), (15a)
βx = Pr(x(t+ 1) = 1|x(t) = x). (15b)

From the discussed threshold structure of deterministic pol-
icy, with properly selected Xmax, under the optimal schedul-
ing policy, the steady state distribution μXmax will be 0. And
we have the following lemma:

Lemma 2: The forward state transfer probability αx and
βx defined in (15a) and (15b) can be computed as follows:

αx =

Q∑
q=1

ηq(1− ξx,q) (16a)

βx =

Q∑
q=1

ηqξq. (16b)
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Fig. 1. Illustrative of the probability transfer graph for a stationary
randomized policy. The circles denotes the AoI and the square de-
notes the channel states. The forward state transmission probability
from AoI x to x + 1 is αx and the backward state transmission
probability from AoI x to 1 is βx.

Let Q be the probability transfer matrix between the states,
which is,

Q =

[
βT

A,0Xmax−1

]
, (17)

where vector β = [β1, · · · , βXmax ]
T is the back-

ward state transition probability vector and A =
diag(α1, · · · , αXmax−1). Vector 0Xmax−1 is a (Xmax − 1)-
dimension vector with all the elements being 0. According to
property of the steady state distribution, we have Qμ = μ.
In addition, considering that μx = 0, ∀x ≥ Xmax, then we
have

∑Xmax
x=1 μx = 1. Thus, the steady distribution μ relates

to strategy {ξx,q} is the solution to the following linear
equations: [

Q− IXmax

1T
Xmax

]
μ =

[
0
1

]
, (18)

where 1Xmax is a Xmax-dimension column vector with all the
elements being 1.

Next, we will convert the search for the optimal stationary
randomized scheduling strategy into an LP. We introduce
a new set of variables yx,q = μxηqξx,q , each denotes the
probability of the user is in state (x, q) and is scheduled to
transmit an update. With this set of variables, we present the
following theorem:

Theorem 1: The Decoupled P-Constrained Cost minimiza-
tion problem is equivalent to the following LP problem:

{y∗x,q} = arg min
{yx,q},{μx}

(
X∑

x=1

Q∑
q=1

Wyx,q +

Xmax∑
x=1

xμx

)
,

(19a)

s.t. μ1 =

Xmax∑
x=1

Q∑
q=1

yx,q, (19b)

μx = μx−1 −
Q∑

q=1

yx−1,q, (19c)

Xmax∑
x=1

μx = 1, (19d)

yx,q ≤ μxηq, (19e)
Xmax∑
x=1

Q∑
q=1

yx,qω(q) ≤ E (19f)

0 ≤ μx ≤ 1, 0 ≤ yx,q ≤ 1, ∀x, q. (19g)

Till now, we construct an LP problem to obtain the opti-
mum stationary randomized policy to minimize the total cost
of a single user with fixed Lagrange multiplier W . Next, we
can construct the optimal stationary randomized scheduling
policy to minimize Lagrange function for a single user.
According to the threshold structure of each deterministic
policy, we will have the following properties on ξ∗x,q:

Corollary 2: The set of optimal scheduling probabilities
{ξ∗x,q} possesses the following characteristics:

1 For any channel state q:

ξ∗x1,q ≤ ξ∗x2,q, ∀1 ≤ x1 < x2. (20a)

2 For a specific AoI x:

ξ∗x,q1 ≥ ξ∗x,q2 , ∀1 ≤ q1 < q2. (20b)

With this corollary, we can then present the threshold
structure of the stationary randomized policy:

Theorem 2: The optimal stationary randomized policy for
solving the single-user scheduling problem (3) under power
consumption constraint also possesses a threshold structure,
which is explained as follows:

1 For any channel state q, there exists a threshold τq , such
that when x > τq , it is always optimal to schedule,
i.e., ξ∗x,q = 1 and when x < τq , ξ∗x,q = 0, while
the scheduling decision at the τq may be a randomized
strategy, i.e., 0 < ξτq,q ≤ 1.

2 The set of threshold is non-decreasing, i.e., τ1 ≤ τ2 ≤
· · · ≤ τQ.

IV. MULTI-USER OPPORTUNISTIC SCHEDULING

In this section, we will provide an algorithm to determine
the multiplier W such that relaxed bandwidth constraint
can be satisfied. Then, we propose an asymptotic optimal
truncated scheduling algorithm for the multi-user case that
satisfies the original hard bandwidth constraint Eq. (7b).

A. Determination of Lagrange Multiplier

After solving the single user problem for fixed W , by
combining the optimum scheduling strategy sn(t) for each of
the user, the optimal policy π∗

R(W ) to minimize the Lagrange
function Eq. (9) for fixed W can be obtained. Next, we
describe how to obtain the optimal Lagrange multiplier W
so that the RB&P-Constrained AoI problem can be solved.

Let g(W ) denote the Langrangre dual function, i.e.,

g(W ) = min
π∈ΠNA

L(π,W ). (21)

Since the relaxed problem gets decoupled into N single
user CMDP, the dual function can be computed by:

g(W ) =
1

N

N∑
n=1

gn(W )−WM,where

gn(W ) = min
πn∈ΠNA

(Ln(πn,W )) , s.t. Eqn. (7c). (22)
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Notice that by Theorem 1, the CMDP that minimizes
Ln(π,W ) is equivalent to an LP, then the duality gap
between gn(W ) and the CMDP is zero [29]. Let Xn(W ) and
An(W ) denote the average AoI and the average activation
probability for user n, respectively. By computing the opti-
mum resource allocation vector {y∗x,q} through solving LP
(19), the dual function gn(W ) can be computed as follows:

gn(W ) = Xn(W ) +WAn(W ) (23a)

where Xn(W ) =

Xmax∑
x=1

xμ∗
x, (23b)

An(W ) =

Xmax∑
x=1

Q∑
q=1

y∗x,q. (23c)

Finally, we apply the subgradient descent method to search
for the Lagrange optimizer. Let W (k) be the Lagrange mul-
tiplier used in the kth iteration. According to [30, Eq. 6.1.1],
the subgradient at W (k) can be computed by:

dW g(W (k)) =
N∑

n=1

An(W
(k))−M. (24)

We start with W (0) = 0, if
∑N

n=1 An(W
(0)) − M ≤ 0,

then scheduling does not have to consider the relaxed band-
width constraint. Otherwise, we adopt an iterative algorithm
update. By choosing a set of stepsizes γk similar to [8], the
multiplier for the next iteration can be computed by:

W (k+1) = W (k) + γkdW g(W (k)). (25)

The iteration ends until |W (k) −W (k+1)| < ε.
However, since the RB&P-Constrained AoI is a con-

strained Markov decision process, the optimum scheduling
policy of which should be a randomization between no
more than two policies, each is the solution to minimize the
Lagrange function Eq. (9). The randomization between the
two policies will enable us to satisfy the relaxed bandwidth
constraint Eq. (8b) in the RB&P-Constrained AoI. Next,
we will talk about how to obtain the optimum randomized
strategy from the obtained Lagrange multipliers sequence
{W (k)}.

Let Wl and Wu be two Lagrange multipliers chosen from
sequence W (k),

Wl = argmax
W (k)

N∑
n=1

An(W
(k)), s.t.

N∑
n=1

An(W
(k))≤M,

(26a)

Wu = arg min
W (k)

N∑
n=1

An(W
(k)), s.t.

N∑
n=1

An(W
(k))≥M.

(26b)

Then, let Ml and Mu be the total bandwidth used with
respect to minimize the function Eq. (9). Let {μn,l,yn,l} be
solution to user n’s LP problem (19) with multiplier Wl and
{μn,u,yn,u} is the solution with multiplier Wu. To satisfy
the relaxed bandwidth constraint, the optimum distribution
{μn,∗,yn,∗} of the relaxed problem is a linear combination

of {μn,l,yn,l} and {μn,r,yn,r}, which can be computed as
follows:

{μn,∗,yn,∗} = λ{μn,l,yn,l}+ (1− λ){μn,u,yn,u}, (27)

where the coefficient λ can be computed in a similar manner
to [8]:

λ =
Mu −M

Mu −Mr
.

Notice that {μn,∗,yn,∗} still satisfy the constraint of the LP
problem for user n. Consider the structure of each Decou-
pled P-Constrained Cost problem, the optimum scheduling
strategy π∗

R for the RB&P-Constrained is then constructed
as follows:

In each slot t, the central controller observes the current
AoI xn(t) and channel state qn(t) of user n, a scheduling
decision sn(t) = 1 is then made with probability ξn,∗xn(t),qn(t)
is can be computed as follows:

ξnx,q =

{
1, ξnx−1,q = 1 or μn,∗

x = 0 or x ≥ Xmax;
yn,∗
x,q

μn,∗
x ηq

, otherwise.
(28)

Finally, the minimum AoI performance to the RB&P-
Constrained AoI problem can be computed through accord-
ing to the optimizer {μn,∗,yn,∗}, which also formulates the
lower bound on the AoI performance to the primal B&P-
Constrained AoI:

AoILB = AoI∗R =

N∑
n=1

Xmax∑
x=1

xμn,∗
x . (29)

B. Multi-User Opportunistic Scheduling with Hard Con-
straint

In this part we construct a truncated policy π based on
optimal scheduling policy for each of the decoupled user
and solve the primal B&P-Constrained AoI problem. Let π∗

R

be the optimum scheduling policy obtained in Sec. IV(A),
where sn(t) is the scheduling decision under the relaxed
constraint, which measures if user n is eager be scheduled.
Denote Ω(t) = {n|sn(t) = 1} as the set of users that are
eager to be scheduled. The scheduling decision un(t) under
hard bandwidth constraint is then carried out as follows:

• If |Ω(t)| ≤ M , i.e., the available bandwidth can satisfy
all the users that are eager to send updates, then all
the users that are eager to be scheduled can send their
updates, i.e., un(t) = 1, ∀sn(t) = 1.

• Otherwise if |Ω(t)| > M , the central controller selects
a subset of M(t) = |M | ∈ Ω(t) users randomly from
Ω(t) and schedule them to send updates. Those users
that are in set Ω(t) but not selected in M(t) is not
selected because of limited bandwidth constraint.

Theorem 3: With the proportion of scheduling resources
M
N = θ keeps a constant, the deviation from the optimal
scheduling policy for a network with N users under the
proposed truncated policy π̃ is O( 1√

N
). Thus, with N → ∞

and M
N = θ, the proposed truncated policy is shown to be

asymptotically optimal for the primal B&P-Constrained AoI
problem with hard bandwidth constraint.
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V. SIMULATIONS

In this section, we provide simulation results to demon-
strate the performance of the proposed scheduling policy.
From [11], the optimal policy to minimize AoI performance
when all the users are identical is a greedy policy that selects
the user with the largest AoI. If there is no packet loss
in the network, the greedy policy is equivalent to round
robin, which requires a minimum power consumption of
ERR
n = M

N

∑Q
q=1 ηn,qω(q) for user n. We measure power

consumption constraint through ratio ρn = En/ERR
n . We

consider a Q = 4 states time-varying channel, the distribu-
tion is assumed to be η = [0.135, 0.239, 0.232, 0.394] and
ω(q) = q for all users. Simulation results are obtained over
a consecutive of T = 106 slots.

Fig. 2 studies average AoI performance as a number of
users, N = {10, 15, · · · , 50}. The power constraint factor is
taken from [0.2, 1.6], i.e., ρn = 0.2 + 1.4

N (n − 1) and the
bandwidth M = {2, 5}. Denote Cn(t) as the total power
consumed by user n until slot t and let R(t) = {n|Ent −
Cn(t) ≥ 0} be the set of users that has enough power to
support transmission in slot t. We compare the proposed
policy with a naive greedy policy that selects no more than
M users with the largest AoI from set R(t) for scheduling.
As can be seen from the figure, the proposed truncated
scheduling achieves a close average AoI performance to the
lower bound and can achieve more than 30% AoI decrease
compared to the greedy algorithm when N = 50.

Fig. 2. Average AoI performance as a number of users N .

Fig. 3 studies the asymptotic average AoI performance as
a number of users, with M

N = { 1
5 ,

1
9}. The power constraint

of each user is selected by ρn = 0.2 + 1.4
N (n − 1). As

can be observed from the figure, the difference between the
proposed strategy and the lower bound decreases with N .
The asymptotic performance is also verified in simulation
results.

We visualize the scheduling policy for some representative
users in Fig. 4. The network consists of N = 8 users with
bandwidth M = 2, the power constraint factor for each
user is ρn = 0.2n. Fig. (a)-(d) demonstrate user {1, 2, 7, 8}
with power constraint ρ = {0.2, 0.4.1.4, 1.6}, respectively.
In Fig. 4(a)-(b), the transmission power for each user is

Fig. 3. Asymptotic average AoI performance as a number of users
N , available bandwidth is chosen by M/N = { 1

5
, 1
9
}.

limited, the scheduling threshold τq is a increasing sequence
as channel state q. Moreover, the threshold of each channel
stated in Fig. 4(b) is smaller than corresponding threshold
in Fig. 4(a), indicating that transmission is more likely to
happen as a result of more available transmission power.
The optimal strategy for a single user seeks to exploit a
good channel state in order to satisfy the power constraint,
while trying to keep the AoI small. If unfortunately the
channel state is always bad, he will keep waiting until data
staleness cannot be bare anymore or the channel state turns
good. By comparing Fig. 4(a)-(b), the scheduler tries to make
full use of the transmission power through a refinement of
activation thresholds. When ρ = 1.4, power consumption
is not a problem, all the channel states shares identical
activation threshold that can satisfy the relaxed bandwidth
constraint. Considering the greedy AoI performance depicted
in Fig. 2, although greedy algorithm attempts to use up the
power and bring smaller AoI performance to users equipped
with enough power, it fails to exploit a good channel and
opportunistically schedules those power constrained users,
hence lead to a much higher AoI performance. Thus, for a
network with different power constrained users, the scheduler
seeks good channels to carry out scheduling decisions for
those power constrained users, while users supported by
enough power are updated in a timely manner that can satisfy
bandwidth constraint.

VI. CONCLUSIONS

In this work, we investigate into the problem of age
minimization scheduling in power constrained wireless net-
works, where communication channels are multi-state time
varying and different levels of transmission power is adopted
to ensure successful transmission. We decouple the multi-
user scheduling problem into a single user level constrained
Markov decision process. We reveal the threshold structure
of the optimal stationary randomized policy for the single
user and convert the optimal scheduling problem into a linear
programming. An asymptotic optimal truncated scheduling
policy for multi-user scenario that satisfies the hard band-
width constraint is proposed. It is revealed that when power
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Fig. 4. Scheduling decisions for users with different power con-
straint ρn.

of the user is very limited, the scheduler seeks to exploit a
good channel state while keeping the information fresh and
minimize the scheduling opportunities. Users equipped with
sufficient power are updated in a timely manner that can
satisfy the hard bandwidth constraint.
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