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Sampling of the Wiener Process for Remote
Estimation over a Channel with Unknown Delay
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Abstract—In this paper, we study an online sampling problem
of the Wiener process. The goal is to minimize the mean squared
error (MSE) of the remote estimator under a sampling frequency
constraint when the transmission delay distribution is unknown.
The sampling problem is reformulated into an optional stopping
problem, and we propose an online sampling algorithm that
can adaptively learn the optimal stopping threshold through
stochastic approximation. We prove that the cumulative MSE
regret grows with rate O(ln k), where k is the number of
samples. Through Le Cam’s two point method, we show that
the worst-case cumulative MSE regret of any online sampling
algorithm is lower bounded by Ω(ln k). Hence, the proposed
online sampling algorithm is minimax order-optimal. Finally, we
validate the performance of the proposed algorithm via numerical
simulations.

Index Terms—Age of Information, Online Learning, Stochastic
Approximation

I. INTRODUCTION

THe omnipresence of the autonomous driving and the in-
telligent manufacturing systems involve tasks of sampling

and remotely estimating fresh status information. For example,
in autonomous driving systems, status information such as
the position and the instant speed of cars keep changing,
and the controller has to estimate the update-to-date status
based on samples collected from the surrounding sensors. To
ensure efficient control and system safety, it is important to
estimate the fresh status information precisely under limited
communication resources and random channel conditions.

To measure the freshness of the status update information,
the Age of Information (AoI) metric has been proposed in [1].
By definition, AoI captures the difference between the current
time and the time-stamp at which the freshest information
available at the destination was generated. It is revealed that
the AoI minimum sampling and transmission strategies behave
differently from utility maximization and delay minimization
[2]. Samples with fresher content should be delivered to the
destination in a timely manner [3].

When the evolution of the dynamic source can be modeled
by a random signal process, the mean square estimation error
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(MSE) based on the available information at the receiver can
be used to capture freshness. Sampling to minimize the MSE
of the random process in different communication networks
are studied in [4]–[9]. Considering that the dynamic source is
a Wiener process, the optimum sampling policy that minimizes
the estimation MSE is shown to have a threshold structure, i.e.,
a new sample should be taken once the difference between the
actual signal value and the estimate based on past samples
exceed a certain threshold. Such thresholds also holds for
the Ornstein-Uhlenbeck process [5], [10] and the Gaussian
Markov source [9]. The optimum sampling thresholds can be
obtained by the bi-section search [7] or iterative thresholding
[11] if the delay distribution and the statistics of the channel
are known in advance.

When the statistics of the communication channel is un-
known, the problem of sampling and transmissions for data
freshness optimization can be formulated into a sequential
decision making problem [12]–[16]. By using the AoI as the
freshness metric, [12]–[14] design online link rate selection
algorithms based on stochastic bandits. When the channels
are time-varying and the transmitter has an average power con-
straint, [17]–[21] employ reinforcement learning algorithms to
minimize the average AoI under unknown channel statistics.
Notice that in applications such as the remote estimation, a
linear AoI cannot fully capture the data freshness. To solve
this problem, Tripathi et al. model the information freshness
to be a time-varying function of the AoI [15], and a robust
online learning algorithm is proposed. The above research
tackles with unknown packet loss rate or utility functions,
the problem of designing online algorithms under unknown
delay statistics are not well studied. The iterative thresholding
algorithm proposed in [11] can be applied in the online setting
when the delay statistics is unknown, whereas the convergence
rate and the optimality of the derived online algorithm are not
well understood.

In this paper, we consider an online sampling problem,
where a sensor transmits status updates of the Wiener source
to a destination through a channel with random delay. Our goal
is to design a sampling policy that minimizes the estimation
error when the delay distribution is unknown a priori. The
main contributions of this paper are as follows:
• The design of the MSE minimum sampling policy is

reformulated as an optimal stopping problem. By analyz-
ing the sufficient conditions of the optimum threshold,
we propose an online sampling policy that learns the
optimum stopping threshold adaptively through stochastic
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approximation. Compared with [11], [22], [23], the op-
eration of the proposed algorithm does not require prior
knowledge of an upper bound of the optimum threshold.

• We prove that the time averaged MSE of the proposed
algorithm converges almost surely to the minimum MSE
if the fourth order moment of the transmission delay
is finite (Theorem 1). In addition, it is shown that the
MSE regret, i.e., the sub-optimality gap between the
expected cumulative MSE of the proposed algorithm and
the optimum policy with distribution knowledge, grows
at a speed of O(ln k), where k is the number of samples
(Corollary 1). The perturbed ordinary differential equa-
tion (ODE) method is a popular tool for establishing the
convergence rate of stochastic approximation algorithms
[24]. However, this tool requires either the threshold
being learned is in a bounded closed set, or the second
moment of the updating directions are bounded. Because
our algorithm does not require an upper bound on the
optimum threshold, and the essential supremum of the
transmission delay could be unbounded, we need to
develop a new method for convergence rate analysis,
which is based on the Lyapunov drift method for heavy
traffic analysis.

• Further by using the classic Le Cam’s two point method,
we show that for any causal algorithm that makes sam-
pling decision based on historical information, under the
worst case delay distribution, the MSE regret is lower
bounded by Ω(ln k) (Theorem 4). By combining Theorem
1 and Theorem 4, we obtain that the proposed online
sampling algorithm achieves the minimax order-optimal
regret.

• We validate the performance of the proposed algorithm
via numerical simulations. In contrast to [11], the pro-
posed algorithm could meet an average sampling fre-
quency constraint.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As is depicted in Fig. 1, we revisit the status update system
in [3], [7], [25], where a sensor takes samples from a Wiener
process and transmits the samples to a receiver through a
network interface queue. The network interface serves the
update packets on the First-Come-First-Serve (FCFS) basis.
An ACK is sent back to the sensor once an update packet
is cleared at the interface. We assume that the transmission
duration after passing the network interface is negligible.

Fig. 1. System model.

Let Xt ∈ R denote the value of the Wiener process at
time t ∈ R+. The sampling time-stamp of the k-th sample,
denoted by Sk, is determined by the sensor at will. Based on

the FCFS principle, the network interface will start serving the
k-th packet after the (k−1)-th packet is cleared at the network
interface and arrived at the receiver. We assume that the service
time Dk are independent and identically distributed (i.i.d) with
a probability distribution PD, and Dk is independent of the
wiener process Xt. The reception time of the k-th packet,
denoted by Rk satisfies the following recursive formula: Rk =
{Sk, Rk−1} + Dk and we define R0 = 0 for simplicity. We
assume the average transmission delay D := ED∼PD [D] is
lower bounded by Dlb > 0.

B. MMSE Estimation

Let i(t) := maxk∈N{k|Rk ≤ t} be the index of the latest
sample received by the destination at time t. The information
available at the receiver at time t can be summarized as
follows: (i). The sampling time-stamps, transmission delay and
the values of previous samples Mt := {(Sj , Dj , XSj )}

i(t)
j=1;

(ii). The fact that no packet was received during (Ri(t), t].
Similar to [3], [26], we assume that the receiver estimates Xt

only based onMt and neglects the second part of information.
The minimum mean-square error (MMSE) estimator [27] in
this case is:

X̂t = E[Xt|Mt] = XSi(t) . (1)

We use a sequence of sampling time instants π , {Sk}∞k=1

to represent a sampling policy. The expected time average
mean square error (MSE) under π is denoted by Eπ , i.e.,

Eπ , lim sup
T→∞

E

[
1

T

∫ T

t=0

(
Xt −XSi(t)

)2
dt

]
. (2)

C. Problem Formulation

Our goal in this work is to design one sampling policy
that can minimize the MSE for the estimator when the delay
distribution PD is unknown. Specifically, we focus on the set
of causal policies denoted by Π, where each policy π ∈ Π
selects the sampling time Sk of the k-th sample based on the
transmission delay {Dk′}k′<k and Wiener process evolution
{Xt}t≤Sk from the past. The transmission delay and the
evolution of the Wiener process in the future cannot be used
to decide the sampling time. Due to the energy constraint, we
require that the sampling frequency should below a certain
threshold. The optimal sampling problem is organized as
follows:

Problem 1 (MMSE minimization).

mseopt , inf
π∈Π

lim sup
T→∞

E

[
1

T

∫ T

t=0

(
X̂t −Xt

)2

dt

]
, (3a)

s.t. lim sup
T→∞

E
[
i(T )

T

]
≤ fmax. (3b)

III. PROBLEM SOLUTION

In this section, the MSE minimization problem (i.e., Prob-
lem 1) is reformulated into an optimal stopping problem. Let
π? be an optimum policy whose average MSE achieves mseopt.
Sufficient conditions for π? are provided in Subsection III-B.
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The online sampling algorithm πonline is provided in Subsec-
tion III-C and Subsection III-D characterizes the behaviors of
the online sampling policy.

Fig. 2. Illustration of the Wiener process and the estimation error. The
sampling and reception time-stamp of the k-th sample are denoted by Sk
and Rk , respectively. For MMSE estimator, X̂t = XSk ,∀t ∈ [Rk, Rk+1).

A. Markov Decision Reformulation 1

According to [7, Theorem 1], policy π? should not take
a new sample before the previous sample is delivered to the
destination. As is depicted in Fig. 2, the waiting time between
the delivery time of the k-th sample and the sampling time of
the (k+1)-th sample is denoted by Wk ≥ 0. Define frame k as
the time interval between the sampling time-stamp of the k-th
and the (k+ 1)-th sample. The following corollary enables us
to reformulate Problem 1 into a Markov Decision Process.

Lemma 1. Let Ik := (Dk, (XSk+t − XSk)t≥0) denote the
recent information of the sampler in frame k. The set of sam-
pling policies that determine the waiting time Wk only based
on the recent information Ik is denoted by Πrecent. Since for
each frame k, the difference XSk+t−XSk evolves as a Wiener
process that is independent of the past {XSk′+t−XSk′}k′<k,
Problem 1 can be reformulated into the following Markov
decision process:

Problem 2 (Markov Decision Process Reformulation).

mseopt = inf
π∈Πrecent

lim sup
K→∞

(∑K
k=1 E

[
1
6 (XSk+1

−XSk)4
]∑K

k=1 E [(Sk+1 − Sk)]
+D

)
,

(4a)

s.t. lim inf
K→∞

1

K

K∑
k=1

E [(Sk+1 − Sk)] ≥ 1

fmax
.

(4b)

The proof is provided in Appendix H of the supplementary
material.

According to [7, Theorem 1], there exists a stationary policy
π? that selects the waiting time Wk using a conditional prob-
ability distribution given the recent Ik that achieves mseopt.
Next, we will reveal the sufficient conditions of such policy
for designing the online algorithm.

B. Designing π? with Known PD
Let Πcons , {π ∈ Πrecent| lim supT→∞ E

[
i(T )
T

]
≤ fmax}

denote the set of policies that satisfy the sampling frequency

constraint. Since π? achieves the minimum expected time-
average MSE among Πcons, we have:

lim sup
K→∞

∑K
k=1 E

[
1
6 (XSk+1

−XSk)4
]∑K

k=1 E[Dk +Wk]
≥ Eπ? −D,π ∈ Πcons.

(5)
For simplicity, denote γ? := Eπ? − D, which is the

average cost of the MDP when the optimum policy π? is

used, i.e., γ? = lim supK→∞

∑K
k=1 E[ 1

6 (XSk+1
−XSk )4]∑K

k=1 E[Dk+Wk]
. Be-

cause 1
K

∑K
k=1 E[Dk + Wk] > 0 , for any policy π ∈ Πcons,

inequality (5) can be rewritten as:

θπ(γ?) := lim inf
K→∞

(
1

K

K∑
k=1

E
[

1

6
(XSk+1

−XSk)4

]

−γ? · 1

K

K∑
k=1

E[Dk +Wk]

)
≥ 0. (6)

Inequality (6) takes the minimum value 0 if and only if
policy π is optimum. Therefore, if the ratio γ? is known, an
optimum policy π? can be obtained by solving the following
functional optimization:

Problem 3 (Functional Optimization Problem).

mseopt = inf
π∈Π

lim sup
K→∞

(
1

K

K∑
k=1

E
[

1

6

(
XSk+1

−XSk

)4]

−γ? 1

K

K∑
k=1

E [(Dk +Wk)]

)
, (7a)

s.t. lim inf
K→∞

E

[
1

K

K∑
k=1

(Dk +Wk)

]
≥ 1

fmax
.

(7b)

To solve Problem 3, we can take the Lagrangian duality
of the constraint (7b) with a dual variable ν and obtain the
Lagrange function L(π, γ, ν):

L(π, γ, ν) , lim sup
K→∞

(
1

K

K∑
k=1

E
[

1

6
(XSk+1

−XSk)4

]

−(γ + ν)
1

K

K∑
k=1

E [(Sk+1 − Sk)]

)
+ ν

1

fmax
.

(8)

We say that a stationary policy π has a threshold structure,
if the waiting time Wk is determined by:

Wk = inf{w ≥ 0
∣∣|XSk+Dk+w −XSk | ≥ τ}. (9)

Let Zt be a Wiener process staring from t = 0. Let D
be the random transmission delay following distribution PD
and the value of the Wiener process at the random time D is
denoted by ZD. Using the threshold policy (9), the expected
frame-length Lk := Dk +Wk and 1

6 (XSk+1
−XSk)4 has the

following properties:

Lemma 2. [7, Corollary 1 Restated]

E[Lk] = E
[
max{τ2, Z2

D}
]
, (10a)
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E
[

1

6
(XSk+1

−XSk)4

]
=

1

6
E
[
max{τ2, Z2

D}2
]
. (10b)

As is revealed by [7], the optimum policy π? has a threshold
structure as in equation (9). To design an off-line algorithm
that can learn the updating threshold τ? of π?, we then reveal
the necessary conditions that τ? should satisfy. With slightly
abuse of notations, let L(τ, γ, ν) denote the expected value of
the Lagrange function L(π, γ, ν) when a stationary policy π
with threshold τ is used. According to Lemma 2, L(τ, γ, ν)
can be computed as follows:

L(τ, γ, ν) =E
[

1

6
max{τ2, Z2

D}2
]
− (γ + ν)E[max{τ2, Z2

D}]

+ ν
1

fmax
. (11)

Condition 1: [7, Theorem 6 Restated] Let τ(γ, ν) be the op-
timum sampling threshold that minimizes function L(τ, γ, ν),
which can be computed as follows:

τ(γ, ν) := arg inf
τ≥0
L(τ, γ, ν) =

√
3(γ + ν). (12)

Recall that for any policy π ∈ Πcons with threshold τ ,
inequality (5) implies

θπ(γ?) =
1

6
E
[
max{τ2, Z2

D}2
]
− γ?E

[
max{τ2, Z2

D}
]
≥ 0.

(13)
According to (12), inequality (13) holds with equality if and
only if π? with threshold τ? =

√
3(γ? + ν?) is used.

Condition 2: [7, Eq. (123, 125)]

ν?
(
E
[
max{3(γ? + ν?), Z2

D}
]
− 1

fmax

)
= 0, ν? ≥ 0. (14)

Adding the Complete Slackness (CS) condition (14) on both
sides of (13), the necessary condition for γ? then becomes:

gν(γ?) = θπ?(γ?) = 0, (15)

where function gν(γ) := E[gν(γ;ZD)] is the expectation of
function gν(γ;ZD) defined as follows:

gν(γ;ZD) :=
1

6
max{3(γ+ν), Z2

D}2−γmax{3(γ+ν), Z2
D}.
(16)

As is shown by [7, Theorem 7], the duality gap between
Eπ? and supν≥0 infπ L(π, γ?, ν) is zero, and (15) becomes a
necessary and sufficient condition.

C. An Online Algorithm πonline

When PD is unknown but ν? is known, we can approximate
γ? by solving equation (15) through stochastic approximation
[24], [28], [29]. Notice that the role of ν? is to satisfy
the sampling frequency constraint. To achieve this goal, we
approximate ν? by maintaining a sequence {Uk} that records
the sampling constraint violations up to frame k.

The algorithm is initialized by selecting γ1 = 0 and U1 =
0. In each frame k, the sampling and updating rules are as
follows:
1. Sampling: We treat νk := 1

V U
+
k as the dual optimizer ν,

where V > 0 is fixed as a constant. The waiting time Wk+1 is

selected to minimize the Lagrange function (8), and according
to the statement after equation (13), Wk is selected by:

Wk = inf{w ≥ 0| |XSk+Dk+w −XSk | ≥
√

3 (γk + νk)}.
(17)

2. Update γk: To search for the root γ > 0 of equation
gνk(γ) = 0, we update γk through the Robbins-Monro
algorithm [29]. In each frame k, we are given an i.i.d sample
δXk = XSk+Dk − XSk ∼ ZD, and the Robbins-Monro
algorithm operates by:

γk+1 = (γk + ηkYk)
+
, (18)

where Yk = gνk(γk; δXk) and function gν(·) is defined in
(16). Recall that Dlb is a non-zero lower bound of the average
delay, the step-size {ηk} is selected by:

ηk =
1

Dlb(2 + kα)
, α ∈ (0.5, 1]. (19)

3. Update Uk: To guarantee that the sampling frequency con-
straint is not violated, we update the violation Uk up to the
end of frame k by:

Uk+1 = Uk +

(
1

fmax
− (Dk +Wk)

)
. (20)

D. Theoretical Analysis

We analyze the convergence and optimality of algorithm
πonline. We assume there is no sampling frequency constraint,
i.e., fmax = ∞ and make the following assumption on
distribution PD:

Assumption 1. The fourth order moment of the transmission
delay is upper bounded by B, i.e.,

E[D4] ≤ B <∞.

The convergence behavior of the optimum threshold 3γ?

and the MSE performance are manifested in the following
theorems:

Theorem 1. The proposed algorithm learns the optimum
parameter γ? almost surely, i.e.,

lim
k→∞

γk = γ?, w.p.1. (21)

The proof of Theorem 1 is obtained by the ODE method in
[24, Chapter 5] and is provided in Appendix B.

Theorem 2. The second moment of (γk − γ?) satisfies:

sup
k

1

ηk
E
[
|γk − γ?|2

]
<∞. (22)

Specifically, if α = 1 and ηk = 1
Dlb(2+kα)

, then the mean
square error decays with rate E[(γk − γ?)2] = O(1/k).

One challenge in the proof of Theorem 2 is that γk is
unbounded and the second moment of Yk is unbounded.
We notice that Yk could become very large when γk is
much larger than the true value γ?, but the truncation of
(γk+ηkYk)+ to non-negative part actually prevents the actual
update |(γk + ηkYk)+ − γk| from becoming too large. Based
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on this observation, we adopt a method from the heavy-
traffic analysis by introducing the unused rate χk := (−(γk +
ηkYk))+, then prove that the variance of the amount of the
actual updating (ηkYk + χk) is finite. Detailed proofs are
provided in Appendix C.

Theorem 3. The average MSE under policy πonline converges
to Eπ? almost surely, i.e.,

lim sup
k→∞

∫ Sk+1

t=0
(Xt − X̂t)

2dt

Sk+1
= Eπ? , w.p.1. (23)

With the mean-square convergence of γk, the proof of
Theorem 3 is a direct application of the perturbed ODE method
[24] and is provided in Appendix I of the supplementary
material.

By using Theorem 2 and Theorem 3, we can upper bound
the growth rate of the cumulative MSE optimality gap in the
following corollary:

Corollary 1. If α = 1, then the growth rate of the cumulative
MSE optimality gap up to the k-th sample can be bounded as
follows:(

E

[∫ Sk+1

0

(Xt − X̂t)
2dt

]
− Eπ?E[Sk]

)
= O (ln k) . (24)

The proof of Corollary 1 is provided in Appendix H of the
supplementary material.

Theorem 4. For any distribution P, let π?(P) denote the
MSE minimum sampling policy when the delay D ∼ P.
The threshold obtained by solving equation (15) is denoted
by γ?(P). After k-samples are taken, the minimax estimation
error γ?(P) is lower bounded by:

inf
γ̂

sup
P

E
[
(γ̂ − γ?(P))2

]
= Ω(1/k). (25)

Let pw(P) := Pr(Z2
D ≤ 3γ?(P)|D ∼ P) denote the

probability of waiting by using policy π?(P).Specifically, let
p?w,uni := Pr(Z2

D ≤ 3γ?uni|D ∼ Uni([0, 1])). Let Πh denote
the set of policies which the sampling decision Sk is made
based on historical information Hk−1. We have the following
result:

inf
π∈Πh

sup
P

(
E

[∫ Sk+1

0

(Xt − X̂t)
2dt

]
− Eπ?(P)E[Sk+1]

)

≥1

4

(
1

24
(1− δ)δp?w,uni

)2

×

(
k∑

k′=1

1

k′

)
= Ω (ln k) . (26)

As the transmission delay PD considered in the paper does
not belong to a specific family and could be quite general,
obtaining a point-wise converse bound on E[(γ̂−γ?(P))2] for
each distribution P is impossible. As an alternative, a minimax
risk bound E[(γ̂ − γ?(P))2] over a general distribution set
P can be obtained using Le Cam’s two point method for
non-parametric estimation [30]. The core idea is to construct
two distributions P1,P2, whose `1 distance |P⊗k1 −P⊗k2 |1 can
be upper bounded by a constant, but (γ?(P1) − γ?(P2))2 ≥
Ω(1/k) is difficult to distinguish. Such a construction is
still challenging because γ?(P) cannot be obtained in closed

form even for the simpliest distribution families such as the
delta distribution or exponential distribution. Notice that the
estimation error of γ? is closely related to the estimation error
gν(·) at a given point. Therefore, the construction of P1 and P2

for obtaining the converse bound of Hölder smooth functions
[30, Chapter 2] are adopted. The proof of inequality (26)
is a direct application of the minimax estimation error (25).
Detailed proof of Theorem 4 is provided in Appendix D.

IV. SIMULATION RESULTS

In this section, we provide simulation results to verify
the theoretic findings and illustrate the performance of our
proposed algorithms. We notice that the MSE minimization
problem is closely related to the AoI minimization problem,
where the AoI at time t, denoted by A(t) = t − Si(t).
For signal-ignorant sampling policies (i.e., the sensor cannot
always observe the time-varying process), according to the
analysis in [3, Section IV-B], policies that minimize the aver-
age AoI achieves the minimum MSE. Therefore, we choose
both offline and online AoI minimization policies (π?AoI from
[3], πitr from [11]) for comparison. To show the convergence
of online learning algorithm, we plotted the average MSE
performance of the optimum off-line algorithm π? from [7].

The transmission delay follows the log-normal distribution
parameterized by µ and σ such that the density function of
the probability measure PD is:

p(x) :=
PD(dx)

dx
=

1

σ
√

2π
exp

(
− (lnx− µ)2

2σ2

)
.

In simulations, we set µ = 0.8 and σ = 1.2, the expected time-
averaged MSE is computed by taking the average of 20 runs.
Fig. 3 depicts the time-average MSE performance up to the k-
th frame of different sampling policies. The evolution of {γk}
and the MSE regret E

[∫ Sk+1

0
(Xt − X̂t)

2dt
]
− Eπ?E[Sk+1]

are depicted in Fig. 4. From Fig. 3, with 5 × 104 samples,
the time averaged MSE is almost the same as using the
optimum policy. From Fig. 5, the MSE regret is almost a
logarithm function of frame k. The asymptotic MSE behaviour
is consistent with the convergence results in Theorem 3 and
Corollary 1.

When there is a sampling frequency constraint, the average
MSE and the average sampling interval achieved by policy
πonline are depicted in Fig. 6 and Fig. 7, respectively. We
set fmax = 1

10D
. From these figures, one can observe that

the average MSE of πonline is close to the optimum MSE
Eπ? and the sampling frequency can be satisfied. In addition,
by choosing a larger V , a smaller MSE performance can be
achieved, whereas a larger number of iterations are needed to
meet the sampling frequency constraint.

V. CONCLUSIONS

In this work, we studied the problem of sampling a Wiener
process for remote estimation over a channel with unknown
delay statistics. By reformulating the MSE minimization prob-
lem as a renewal-reward process, we proposed an online
sampling algorithm that can adaptively learn the optimum
algorithm as the number of samples grows. We showed that the
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Fig. 3. The time average MSE evolution as a function of frame k.

Fig. 4. The evolution of the threshold estimate γk .

average MSE obtained by the proposed algorithm converges
to the minimum MSE almost surely, and the cumulative MSE
has an order of O(ln k), where k is the number of samples. We
then prove that the cumulative MSE regret of any algorithm
is at best Ω(ln k). Numerical simulation results validate the
convergence behaviors of the proposed algorithm.

APPENDIX A
NOTATIONS AND PRELIMINARY LEMMAS

In Table I, we summarize the notations used in the following
proofs. Throughout the proofs, we use N1, N2, · · · to denote
absolute constants and C1(·), C2(·) to denote polynomials with
finite order. For ease of exposition, the specific values and
expressions of the constants and functions may vary across
different context.

Lemma 3. Let M := E[D2], the optimum ratio γ? is upper
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8000

10000
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Fig. 5. the MSE regret ∆k := E
[∫ Sk+1

0 (Xt − X̂t)2dt
]
− Eπ?E[Sk+1]

(right)
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Fig. 6. The time average MSE evolution as a function of frame k. (Left:
V = 10, Right: V = 1. )

and lower bounded by:

1

6
D ≤ γ? ≤ 1

2

M + 2D 1
fmax

+ 1
f2
max

D + 1
fmax

. (27)

The proof is provided in Appendix J.

Lemma 4. For threshold γ <∞, the first, second and fourth
order moments of the stopping time τγ are bounded, i.e.,

E[lγ ] ≤ 3γ +D, (28a)

E[l2γ ] ≤ 10

3

(
(3γ)2 + 3

√
B
)
, (28b)

E
[
l4γ
]
< 43

(
(3γ)4 + 105B

)
<∞. (28c)

The proof of Lemma 4 is provided in Appendix K.

Lemma 5. Function g0(γ) = q(γ) − γl(γ) and has the
following properties:

(i) g0(γ) is concave and monotonically decreasing. The
second order derivative −3 ≤ g′′0(γ) ≤ 0.

(ii) g0(γ?) = 0
(iii) For γ 6= γ?, (γ − γ?)g0(γ) ≤ −l(γ?)(γ − γ?)2 ≤ 0.

The proof of Lemma 5 is provided in Appendix L.
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Fig. 7. The average sampling interval under different constant V . (Left:
V = 10, Right: V = 1. )

TABLE I
NOTATIONS

Notation Meaning
Zt a Wiener process staring from time 0
lγ length of running time using stopping rule τγ :=

inf{t ≥ D||Zt| ≥
√

3γ}
δXk δXk := XSk+Dk −XSk
Qk Qk := 1

6

(
XSk+Dk −XSk

)4
Lk Lk := Sk+1 − Sk = Dk +Wk , frame length k
Ek Ek :=

∫ Sk+1

Sk
(Xt − X̂t)2dt, cumulative estimation error in

frame k
q(γ) q(γ) := 1

6
E
[
max{3γk, Z2

D}
2
]
, the expectation of Qk

when γk = γ
l(γ) l(γ) := E[max{3γ, Z2

D}], expected frame length Lk when
γk = γ

Ik (Dk, (Xt −XSk )Sk≤t<Sk+1
, information in frame k

Hk Hk := {Iκ}κ≤k historical information up to the end of
frame k

Ek[·] Conditional expectation E[·|Hk−1]

tk tk :=
∑k
i=1 ηk or tk :=

∑k
i=1 εk , the cumulative step-

sizes depending on the context
m(t) m(t) is the unique k so that tk ≤ t ≤ tk+1

Corollary 2. For each γk < ∞, if the fourth order moment
of the delay satisfies E[D4] < B < ∞, given historical
transmission Hk−1, the conditional second order moment of
the cumulative error in frame Ek =

∫ Sk+1

Sk
(Xt − X̂t)

2dt can
be bounded as follows:

Ek[E2
k] = 3(XSk −XSk−1

)2
√
B

+ 12C1(γk, B)(XSk −XSk−1
)2 + 3C2(γk, B) <∞,

(29)

where C1 and C2 are fourth order polynomials of γ.

The proof of Corollary 2 is provided in Appendix N.

APPENDIX B
PROOF OF THEOREM 1

To show that γk converges to γ? almost surely, we use the
sufficient condition from [24, p.190, Theorem 7.1]. Recall that
the step-size ηk= 1

k . Define t0 = 0 and denote the sum of step-
sizes up to frame k by tk :=

∑k
i=1 ηk. For t ≥ 0, let m(t)

be the unique k ∈ N+ so that tk ≤ t < tk+1. Without a
sampling constraint, νk ≡ 0,∀k. Then the update rule for γk
from equation (18) can be rewritten in the following recursive
form:

γk+1 = γk + ηk (g0(γk) + δMk)︸ ︷︷ ︸
Yk

, (30)

where we recall that Yk = 1
6 max{3γk, δX2

k}2 −
γk max{3γk, δX2

k} and δMk is the difference between re-
alization and the conditional expectation Ek[Yk] = g0(γk).
Notice that the difference δMk := Yk − Ek[Yk] depends only
on the transmission delay and the Wiener process evolution
(Xt − XSk) in frame k and γk, which can be predictable
given Hk−1 and is therefore a martingale sequence. We then
show that {Yk}, {δMk} have the following properties,
(1.1) For each constant N < ∞, supk E[|Yk|I(|γk|≤N)] is
bounded, i.e.,

sup
k

E
[
|Yk|I(|γk|≤N)

]
≤ sup

k
E
[

1

6
max{3γk, δX2

k}2 · I(|γk|≤N)

]
+ sup

k
E
[
γk max{3γk, δX2

k}I(|γk|≤N)

]
<

1

6

(
9N2 + E[Z4

D]
)

+N ·
(
3N + E[Z2

D]
) (a)

≤ ∞. (31)

where inequality (a) is because E[Z4
D] = 3E[D2] ≤

3
√

E[D4] <∞ and E[Z2
D] = E[D] <∞.

(1.2) Function Yk = g(γk; δx) is continuous in γk for each
δx.
(1.3) The martingale sequence δMkI(|γk|≤N) can be bounded
as follows:

Var[δMkI(|γk|≤N)] ≤ E[Y 2
k I(|γk|≤N)]

≤E

[(
1

6
max{3γk, δX2

k}2 − γk max{3γk, δX2
k}
)2

I(|γk|≤N)

]
(b)

≤E

[
2

((
1

6
max{3γk, δX2

k}2
)2

+ γ2
k

(
max{3γk, δX2

k}
)2)

× I(|γk|≤N)

]
(c)

≤2

(
1

36
(3N)4 + 105B +N2(9N2 + 3

√
B)

)
≤ N1. (32)

where inequality (b) is because E[(a−b)2] ≤ E[2(a2+b2)]; in-
equality (c) is because δXt ∼ ZD is a Wiener process starting
from t = 0 and therefore, E[Z8

D] = 105E[D4] ≤ 105B.
Since sequence δMkI(|γk|≤N) has mean zero. Its value only

depends on γk and the Wiener process evolution in frame k.
The correlation E

[
δMiI(|γi|≤N) · δMjI(|γj |≤N)

]
= 0,∀i 6= j.

As the variance of δMkI(γk≤N) is bounded in inequality (32),
the stepsizes ηk satisfies

∑∞
k=1

1
2Dlb

k−2α = 1
2lb

(
1 + 1

2α−1

)
,

according to [24, Chapter 5, Eq. (5.3.18)], for each µ > 0 we
have

lim
k→∞

Pr

sup
j≥k

max
0≤t≤T

∣∣∣∣∣∣
m(jT+t)−1∑
i=m(jT )

εδMiI(|γi|≤N)

∣∣∣∣∣∣ ≥ µ
 = 0.

(33)
Let γk(ω) be the value of ratio γ on sample path ω. Recall

that the stepsizes {ηk} selected in (19) satisfies
∑∞
k=1 ηk =

∞,
∑∞
k=1 η

2
k ≤ ∞. According to [24, p.170, Theorem 1.2],

with probability 1, the limit limk→∞ θk(ω) are trajectories of
the following ordinary differential equation (ODE), i.e.,

γ̇ = g0(γ). (34)
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The next step is to show the solution of the ODE in
equation (34) converges to γ? as time diverges. Equation
(15) implies g0(γ?) = 0 and therefore, γ? is an equilibrium
point of ODE (34). To show that the ODE is stationary at
γ = γ?, we use the Lyapunov approach by defining function
V (γ) := 1

2 (γ − γ?)2,whose time derivative V̇ = d
dtV (γ(t))

can be computed by;

V̇ = (γ − γ?) γ̇ = (γ − γ?) g0(γ). (35)

According to Lemma 5-(iii), V̇ = (γ − γ?)g0(γ) < 0, the
stability of γ? is verified through Lyapunov theorem.

APPENDIX C
PROOF OF THEOREM 2

The analysis of the convergence rate is obtained through
Lyapunov analysis, where the Lyapunov function is denoted
by V (γ) := 1

2 (γ − γ?)2. The proof is divided into two steps:
first we will upper bound the Lyapunov drift for each γk by
showing the following equation holds:

Ek[V (γk+1)]− V (γk) ≤ −ηkDlbV (γk) +O(η2
kN1). (36)

Then, based on (36), we then compute E[V (γk)] directly.
Step 1: Bounding the Lyapunov Drift: The analysis is
divided into two cases: For γk ≤ 3γ?, inequality (36) can be
verified easily (Case 1); For γk ≥ 3γ? we will first establish
the relationship between Ek[V (γk+1)] − V (γk) and Var[Yk],
then upper bound Var[Yk] using the fact that Z2

D is sub-
Gaussian when D is fourth order bounded (Case 2). Detailed
proofs are as follows:
Case 1: If γk ≤ 3γ?, we have:

Ek[V (γk+1)]− V (γk)

=Ek
[

1

2

(
(γk + ηkYk)+ − γ?

)2]− 1

2
(γk − γ?)2

≤Ek
[

1

2
(γk − γ? + ηkYk)2 − 1

2
(γk − γ?)2

]
(a)
= (γk − γ?)ηkg0(γk)

+
1

2
η2
kEk

[(
1

6
max{3γk, δX2

k}2 − γk max{3γk, δX2
k}
)2
]

(b)

≤ − 2ηkl(γ
?)V (γk)

+
1

2
η2
k

(
1

36
((9γ?)4 +B) + (3γ?)2((9γ?)2 + 3

√
B)

)
,

(37)

where equality (a) is because Ek[Yk] = Ek[g0(γk; δXk)] =
g0(γk); inequality (b) is obtained because according to
Lemma 5-(iii), (γk − γ?)g0(γk) ≤ −l(γ?)(γk − γ?)2 =
−2l(γ?)V (γk) and the assumption that γk ≤ 3γ?.
Case 2: If γk ≥ 3γ?, γk+1 = (γk + ηkYk)

+ is truncated into
the non-negative real part. We can view the evolution of γk as
a queueing system, where the queue γk is non-negative, ηkYk
is the arrival rate minus the service rate. Therefore, it is natural
to introduce the “unused rate” from [31], which is denoted by
χk := (− (γk + ηkYk))

+. If χk = 0, (γk + ηkYk)χk = 0 =
−χ2

k and if χk ≥ 0, γk + ηkYk = −χk, therefore

(γk + ηkYk)χk = −χ2
k. (38)

Since γk + ηkYk + χk ≥ 0, we have:

−Ek[γk + ηkYk] ≤ Ek[χk]. (39)

We can then upper bound Ek[V (γk+1)− V (γk)] by:

Ek [V (γk+1)− V (γk)]

=Ek
[

1

2
(γk − γ? + ηkYk + χk)

2 − 1

2
(γk − γ?)2

]
=Ek

[
1

2
(γk − γ? + ηkYk)

2 − 1

2
(γk − γ?)2

+
1

2
χ2
k + (γk + ηkYk)χk − γ?χk

]
(c)
=Ek

[
1

2
(γk − γ? + ηkYk)2 − 1

2
(γk − γ?)2 − 1

2
χ2
k − γ?χk

]
(d)

≤ 1

2
(γk − γ? + ηkEk[Yk])

2 − 1

2
(γk − γ?)2 +

1

2
η2
kVar[Yk]

− 1

2
Ek[χk]2 − γ?Ek[χk]

=
1

2
(γk − γ? + ηkEk[Yk])

2 − 1

2
(γk − γ?)2 +

1

2
η2
kVar[Yk]

− 1

2
(−Ek[χk]− γ?)2

+
1

2
(γ?)2, (40)

where equality (c) is because equation (38); inequality (d) is
obtained because Ek[χ2

k] ≥ Ek[χk]2 ≥ 0;
To upper bound (36), we then further divide the analysis

into two cases:
Case 2(a): If Ek[γk+ηkYk] ≤ γ?, we then have Ek[γk−γ?+
ηkYk] ≤ 0. According to (39), | −Ek[χk]− γ?| ≥ |γk − γ? +
ηkEk[Yk]|. Therefore, inequality (40) can be upper bounded
by:

Ek [V (γk+1)− V (γk)]

≤− 1

2
(γk − γ?)2 +

1

2
(γ?)2 +

1

2
η2
kVar[Yk]

(e)

≤ − 1

4
(γk − γ?)2 +

1

2
η2
kVar[Yk]

(f)

≤ − 2ηkDlbV (γk) +
1

2
η2
kVar[Yk], (41)

where inequality (e) is obtained because 1
4 (γk − γ?)2 ≥

(γ?)2 ≥ 1
2 (γ?)2 because in Case 2 we have γk ≥ 3γ?;

inequality (f) is obtained because ηkDlb ≤ 1
2 by the step-

size selection rule in equation (19).
Case 2(b): If Ek[γk + ηkYk] ≥ γ?, considering that Ek[Yk] =
g0(γk) < 0 for γk ≥ γ?, we have 0 > Ek[ηkYk] ≥ −(γk−γ?).
Inequality (40) can be bounded by:

Ek[V (γk+1)− V (γk)]

(g)

≤ 1

2
(γk − γ?)(γk − γ? + ηkEk[Yk])− 1

2
(γk − γ?)2

+
1

2
η2
kVar[Yk]

≤1

2
ηk(γk − γ?)g0(γk) +

1

2
η2
kVar[Yk]

(h)

≤ − 1

2
ηkl(γ

?)(γk − γ?)2 +
1

2
η2
kVar[Yk]

=− ηkl(γ?)V (γk) +
1

2
η2
kVar[Yk], (42)
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where equality (g) is because (−Ek[χk]− γ?)2 ≥ (γ?)2 and
(γk − γ? + ηkEk[Yk])2 ≤ (γk − γ? + ηkEk[Yk])(γk − γ?);
inequality (h) is due to Lemma 5-(iii).

For proceed to show inequality (36) for γk ≥ 3γ?, we need
to upper bound Var[Yk] in inequalities (41) and (42). First, we
compute the expectation E[Yk] as follows:

Ek[Yk] =E
[

1

6
max{3γk, Z2

D}2 − γk max{3γk, Z2
D}
]

=− 3

2
γ2
k + E

[
(
1

6
Z4
D − γkZ2

D +
3

2
γ2
k)I(Z2

D≥3γk)

]
=− 3

2
γ2
k + E

[
1

6
(Z2

D − 3γk)2I(Z2
D≥3γk)

]
≤− 3

2
γ2
k + E

[
1

6
(Z2

D)2

]
≤− 3

2
γ2
k +

1

2
E[D2] ≤ −3

2
γ2
k +

1

2

√
B. (43)

Given historical information Hk−1, the variance of Yk can
be computed by:

Var[Yk|Hk−1]

=Ek
[
(Yk − Ek[Yk])2

]
=Ek

[(
1

6
Z4
D − γkZ2

D +
3

2
γ2
k −

3

2
γ2
k − Ek[Yk]

)2

I(Z2
D≥3γk)

]

+ Ek

[(
−3

2
γ2
k − Ek[Yk]

)2

I(Z2
D≤3γk)

]
(h)

≤ 1

4
B + 2Ek

[(
1

6
Z4
D − γkZ2

D +
3

2
γ2
k

)2

I(Z2
D>3γk)

]

+ 2Ek

[(
−3

2
γ2
k − Ek[Yk]

)2

I(Z2
D>3γk)

]
≤3

4
B +

1

3
Ek
[
(Z2

D − 3γk)4I(Z2
D≥3γk)

]
≤3

4
B +

1

3
E[Z8

D] ≤ (35 +
3

4
)B, (44)

where (i) is because Ek[Yk] ≤ − 3
2γ

2
k+ 1

2

√
B implies (− 3

2γ
2
k−

Ek[Yk])2 ≤ 1
4B and (a+ b)2 ≤ 2(a2 + b2).

Denote N1 := max{(35 + 3
4 )B, 1

36 ((9γ?)4 + B) +

(3γ?)2((9γ?)2 + 3
√
B)}, inequalities (37), (41) and (42) then

lead to:

Ek[V (γk+1)]− V (γk) ≤ −ηkDlbV (γk) + η2
kN1. (45)

Step 2: Computing E[V (γk)] through iteration: Taking the
expectation with respect to Hk−1 on both sides of (45), we
have:

E[V (γk+1)] ≤ (1− ηkDlb)E[V (γk)] + η2
kN1. (46)

Multiplying inequality (46) from i = 1 to k yields:

E[V (γk+1)] ≤
k∏
i=1

(1− ηiDlb)V (γ0)

+

k∑
i=1

η2
iN1 ·

k∏
j=i+1

(1− ηjDlb). (47)

Since the stepsize selected by (19) satisfies

ηk → 0, lim inf
k

min
n≥i≥m(tk−T )

ηn
ηi

= 1

according to [24, p. 343, Eq. (4.8)], term
∏k
i=1(1− ηiDlb) =

O(ηk). Therefore,

sup
k

E
[

(γk − γ?)2

ηk

]
= sup

k
E [2V (θk)/ηk] = O(1). (48)

This finishes the proof of Theorem 2.

APPENDIX D
PROOF OF THEOREM 4

1) Proof of Inequality (25): Let P1,P2 be two delay distri-
butions and let γ?1 , γ

?
2 be the solution to (15) when D ∼ P1

and D ∼ P2, respectively. Through Le Cam’s inequality [32],
we have:

inf
γ̂

sup
P

E
[
(γ̂ − γ?(P))

2
]
≥ (γ?1 − γ?2)2 ·

(
P⊗k1 ∧ P⊗k2

)
, (49)

where P∧Q :=
∫

Ω
min{p(x), q(x)}dx and P⊗k is the product

of distribution of k i.i.d random variables drawn from P.
To use Le Cam’s inequality (49), we need to find two

distributions P1 and P2, whose `1 distance |P⊗k1 − P⊗k2 |1 is
bounded, and the difference (γ?1 − γ?2)2 is of order 1/k. We
consider P1 to be a uniform distribution on [0, 1] and let γ?1
be the optimum ratio of distribution P1. Through Corollary 3,
we can obtain a loose upper bound on γ?1 as follows:

γ?1 <
1

2

E[D2]

E[D]
=

1

3
. (50)

Let c ≤ 1
2 be a constant and we denote

δ = min{1− 3γ?1 , 1/3, p
?
w, uni/2}. (51)

Let P2 be a probability distribution with probability density
function p2(x) defined as follows:

p2(x) =


1− c

√
1/k, x ≤ 1

2δ;

1, 1
2δ < x ≤ 1− 1

2δ;

1 + c
√

1/k, x > 1− 1
2δ;

0, otherwise.

(52)

We will first bound (γ?1 − γ?2)2 (in Step 1) and P⊗k1 ∧ P⊗k2

(in Step 2) as follows:
Step 1: Lower bounding γ?2 − γ?1 : For notational sim-
plicity, denote function h1(γ) := ED∼P1 [ 1

6 max{3γ, Z2
D}2 −

γmax{3γ, Z2
D}] and h2(γ) := ED∼P2 [ 1

6 max{3γ, Z2
D}2 −

γmax{3γ, Z2
D}]. According to the definition of P2 in (52),

for each γ, the difference between h1(γ) and h2(γ) can be
computed by:

h2(γ)− h1(γ)

=

∫ 1

1−δ/2

c√
k
E
[

1

6
max{3γ, Z2

D}2 − γmax{3γ, Z2
D}
∣∣D = x

]
dx

−
∫ δ/2

0

c√
k
E
[

1

6
max{3γ, Z2

D}2 − γmax{3γ, Z2
D}
∣∣D = x

]
dx

(a)
=

∫ 1

1−δ/2

c√
k
E
[

1

6
(Z2

D − 3γ)2I(Z2
D≥3γ)|D = x

]
dx
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−
∫ δ/2

0

c√
k
E
[

1

6
(Z2

D − 3γ)2I(Z2
D≥3γ)|D = x

]
dx, (53)

where inequality (a) is obtained because

1

6
max{3γ, Z2

D}2 − γmax{3γ, Z2
D}

=− 3

2
γ2 +

1

6
(Z2

D − 3γ)2I(Z2
D≥3γ). (54)

Since γ?1 is the optimum ratio for delay distribution P1, we
have h1(γ?1) = 0. According to equation (53), function h2(γ?1)
can be lower bounded by:

h2(γ?1 )

(b)

≥ c√
k
·
∫ 1

1−δ/2
E
[

1

6
(Z2

D − 3γ?1)2I(Z2
D≥3γ?1 )

∣∣D = x

]
dx

−
∫ δ/2

0

c√
k

1

2
x2dx

≥ c√
k
·
∫ 1

1−δ/2
E
[

1

6
(Z2

D − 3γ?1)2I(Z2
D≥3γ?1 )

∣∣D = x

]
dx

− c√
k

1

6

(
δ

2

)3

. (55)

where inequality (b) is because E[ 1
6 (Z2

D−3γ)2I(Z2
D≥3γ)|D =

x] ≤ E[ 1
6Z

4
D|D = x] = 1

2x
2.

We then proceed to lower bound
E
[

1
6 (Z2

D − 3γ?1)2I(Z2
D≥3γ?1 )|D = x

]
for each delay

realization x ∈ [1− δ/2, 1] as follows:

E
[

1

6
(Z2

D − 3γ?1 )2I(Z2
D≥3γ?1 )|D = x

]
(c)

≥E
[

1

6
(Z2

D − 3γ?1 )2I(3γ?1≤Z2
D≤x) +

1

6
(Z2

D − x)2I(Z2
D≥x)|D=x

]
≥E

[
1

6
(Z2

D − 3γ?1 )2I(3γ?1≤Z2
D≤x)

]
+

1

6

(
Var[Z2

D|D = x]− x2Pr
(
Z2
D ≤ x|D = x

))
(d)

≥ 1

6
x2 ≥ 1

6
(1− δ/2)2, (56)

where inequality (c) is because δ ≥ 1 − 3γ?1 by equa-
tion (51), and for the conditional mean E[Z2

D|D = x] =
x ≥ 1 − δ/2 ≥ 1 − δ ≥ 3γ?1 ; inequality (d) is because
Var[Z2

D|D = x] = 2x2 and x2Pr(Z2
D ≤ x) ≤ x2 and

E
[

1
6 (Z2

D − 3γ?1)2I(3γ?1≤Z2
D≤x)

]
≥ 0. Plugging inequality (56)

into (55) and recall that δ < 1 by definition, we have the lower
bound of h2(γ?1 ):

h2(γ?1) ≥ c√
k

δ

2

1

6

((
1− δ

2

)2

−
(
δ

2

)2
)

≥ c√
k

δ

12
(1− δ) > 0. (57)

By Lemma 5-(i), function h2(·) is monotonically decreasing.
Since h2(γ?1 ) > 0 and h2(γ?2) = 0, we can conclude that
γ?2 ≥ γ?1 . We then proceed to bound γ?2 − γ?1 through Taylor
expansion at γ = γ?1 .

h2(γ?2) = h2(γ?1) + h′2(γ)(γ?2 − γ?1 ), (58)

where γ ∈ [γ?1 , γ
?
2 ]. Therefore, γ?2 can be computed by:

γ?2 − γ?1 = −h2(γ?1)

h′2(γ)
. (59)

To lower bound γ?2 , we will first find a loose upper bound
of γ?2 using Lemma 3:

γ?2 ≤
1

2

ED∼P2
[D2]

ED∼P2 [D]
≤ 1

2

(
1

3
+ δ · c

√
1/k

)
, (60)

Therefore, since δ < 1/3, we have |h′2(γ)| ≤ |h′2(γ?2 )| =

E[max{3γ?2 , Z2
D}] ≤ D + 3γ2, ub ≤ 1 + 1

2 + 3
2c
√

1
k δ ≤ 2.

Then by inequality (57), we have

γ?2 − γ?1 ≥
−h2(γ?1)

h′2(γ?2 )
≥ 1

24
(1− δ)δc

√
1

k
. (61)

Step 2: Lower bounding P⊗k1 ∧P
⊗k
2 : Let |P−Q| =

∫
Ω
|dP−

dQ| be the `1 distance between probability distribution P and
Q. Then

P⊗k1 ∧ P⊗k2 =

∫
min{P⊗k1 (dx),P⊗k2 (dx)}

=

∫
P⊗k1 (dx) ·

(
1−

(
P⊗k2 (dx)− P⊗k1 (dx)

)+
P⊗k1 (dx)

)
=1−

∫ (
P⊗k2 (dx)− P⊗k1 (dx)

)+
=1− 1

2
|P⊗k1 − P⊗k2 |1. (62)

Equality (62) enables us to lower bound P⊗k1 ∧P
⊗k
2 by upper

bounding the `1 distance |P⊗k1 −P
⊗k
2 |1, which can be obtained

by the Pinsker’s inequality:

1

2

∣∣P⊗k1 − P⊗k2

∣∣
1

≤
√

1

2
DKL(P⊗k2 ||P

⊗k
1 )

=

√
1

2
kDKL(P2||P1)

(e)

≤

√
1

2
k

∫ 1

0

p2(x) ln p2(x)dx

(f)

≤

√
1

2
k

∫ 1

0

(
p2(x)− 1 +

1

min{p2(x), 1}
(p2(x)− 1)2

)
dx

(g)

≤

√
1

2
k

1

inf0≤d≤1 p2(d)

∫ 1

0

(p2(x)− 1)2dx

≤
√

1

2
k

1

1− c
√

1/k
δ
c2

k
≤
√
δc2, (63)

where inequality (e) is because the density function
p1(x) = 1 for uniform distribution, therefore DKL(P2||P1) =∫ 1

0
p2(x) ln p2(x)dx; inequality (f) is because function

g(t) := (t ln t) is convex, its derivative g(t)′′ = 1/t, therefore,
through Taylor expansion we have g(t) ≤ g(1) + (t − 1) +
1
2

1
min{t,1} (t − 1)2 = (t − 1) + 1

2
1

min{t,1} (t − 1)2; inequality

(g) is because
∫ 1

0
p2(x)dx = 1.
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By choosing c = 1/2 and recall that δ < 1, inequality (63)
can be upper bounded by:

1

2
|P⊗k1 − P⊗k2 |1 ≤

1

2
. (64)

Plugging (64) into (62) yields:

P⊗k1 ∧ P⊗k2 ≥ 1

2
. (65)

Finally, plugging (65) and (61) into the Le Cam’s inequality
(49) finishes the proof of inequality (25):

inf
γ̂

sup
P

(γ̂ − γ?(P))2 ≥ 1

2

(
1

24
(1− δ)δp?w,uni

)2

· 1

k
=: N.

(66)
2) Proof of Inequality (26): The proof is divided in to three

step: First we decomposite the cumulative MSE gap up to
Sk+1 into the cumulative MSE gap within each frame, and
then lower bound the MSE regret in each frame using the
difference between frame-length Lk and the optimum frame-
length l?(P); then we obtain the minimax lower bound of
(E[Lk]− l?(P))2 and finish the proof.
Step 1: Cumulative MSE decomposition:

E

[∫ Sk+1

0

(Xt − X̂t)
2dt− (γ? +D)Sk+1

]

=

k∑
k′=1

E

[∫ Sk′+1

Sk′

(Xt − X̂t)
2dt− (γ? +D)Lk′

]

=

k∑
k′=1

(
E
[ ∫ Sk′+Dk′

Sk′

(Xt −XSk′−1
)2dt

+

∫ Sk′+1

Sk′+Dk′

(Xt −XSk′ )
2dt− (γ? +D)Lk′

])
=

k∑
k′=1

(
E
[ ∫ Sk′+Dk′

Sk′

(Xt −XSk′ +XSk′ −XSk′−1
)2dt

+

∫ Sk′+1

Sk′+Dk′

(Xt −XSk′ )
2dt− (γ? +D)Lk′

])
(a)
=

k∑
k′=1

(
E
[ ∫ Sk′+Dk′

Sk′

(Xt −XSk′ )
2dt+ (XSk′ −XSk′−1

)2Dk′

+

∫ Sk′+1

Sk′+Dk′

(Xt −XSk′ )
2dt− (γ? +D)Lk′

])
=

k∑
k′=1

(
E

[∫ Sk′+1

Sk′

(Xt −XSk′ )
2dt− γ?Lk′

])

+

k∑
k′=1

E
[
(XSk′ −XSk′−1

)2Dk′ −DLk′
]

(b)
=

k∑
k′=1

(
E

[∫ Sk′+1

Sk′

(Xt −XSk′ )
2dt− γ?Lk′

])

+

k∑
k′=1

(
E[DLk′−1 −DLk′ ]

)

=

k∑
k′=1

E

[∫ Sk′+1

Sk′

(Xt −XSk′ )
2dt− γ?Lk′

]
︸ ︷︷ ︸

=:Υk

−DE[Lk],

(67)

where equation (a) is because for E[(Xt − XSk′ )(XSk′ −
XSk′−1

)] = 0, equation (b) is because Dk′ is independent
of XSk′ −XSk′−1

and E[Dk′ ] = D, E[(XSk′ −XSk′−1
)2] =

E[Sk′ − Sk′−1] = Lk′−1.
We then proceed to lower bound each item Υk in equation

(67) using the following Lemma:

Lemma 6. For each sample policy π with a random sampling
interval τ , let lπ := E[τ ] = E[Z2

τ ] denote the expected running
length. Recall that γ?(P), l?(P) are the optimum ratio and
optimum frame length when delay distribution D ∼ P and
pw(P) := Pr

(
Z2
D ≤ 3γ?(P)

)
be the probability of waiting ,

the following inequality holds:

E
[∫ τ

t=0

Z2
t dt
]
− γ?(P)E[τ ] ≥ 1

6
pw(P) (lπ − l?(P))

2
, (68)

where l?(P) := ED∼P[max{3γ?(P), Z2
D}] is the average

frame length when the optimum policy π?(P) is used.

Proof for Lemma 6 is provided in Appendix M. Notice that
Xt−XSk is a Wiener Process starting from time t = Sk,Hk−1

records the previous delay and Wiener process evolution at the
beginning of frame k. Since the sampling policy in frame k
depends on Hk−1 and δXk = XSk+Rk −XSk , we can lower
bound the worst case regret of Υk as follows:

inf
π

sup
P

Υk

= inf
π

sup
P

E

[∫ Sk+1

t=Sk

(Xt −XSk)2dt− γ?(P)Lk

]
≥ inf

π
sup
P

1

6
pw(P)EHk−1

[
(E[Lk|Hk−1]− l?(P))

2
]

≥ inf
π

max
P∈{P1,P2}

1

6
pw(P)EHk−1

[
(E[Lk|Hk−1]− l?(P))

2
]

≥1

6
min{pw(P1), pw(P2)}︸ ︷︷ ︸

=:H1

× inf
π

max
P∈{P1,P2}

EHk−1

[
(E[Lk|Hk−1]− l?(P))

2
]

︸ ︷︷ ︸
=:H2

. (69)

Inequality (69) works for any distribution P1 and P2. We
select P1 to be the uniform distribution over interval [0, 1] and
P2 using equation (52). Then the first term H1 in (69) can be
lower bounded by:

H1 = min{pw(P1), pw(P2)}
= min{Pr

(
Z2
D ≥ 3γ?1 |D ∼ P1

)
,Pr
(
Z2
D ≥ 3γ?2 |D ∼ P2

)
}

(c)

≥ min{EP1 [Z2
D]

3γ?1
,
EP2 [Z2

D]

3γ?2
}

(d)

≥ min{EP1
[D]

3× 1
3

,
EP2

[D]

3× 7
24

}

(e)

≥ min{1/2, 4/7} = 1/2, (70)
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where inequality (c) is by Markov inequality; inequality (d) is
because E[Z2

D] = E[D] by the optimal stopping theorem, γ?1 ≤
1
3 from (50) and γ?2 ≤ 1

2

(
1
3 + δ · c

√
1/k
)
≤ 7

24 ; inequality
(e) is because EP1

[D] = 1/2 for uniform distribution P1 and
EP2 [D] ≥ EP1 [D] = 1/2 due to the distribution of P2 in
equation (52). It then remains to prove that the second term
H2 in (69).
Step 2: Since Lk is made using k i.i.d samples δX⊗k =
{δXk = (XSk+Dk −XSk)}, where δX⊗(k−1) are from Hk−1

and δXk = XSk+Rk − XSk , E[Lk|Hk−1] can be viewed as
an deterministic estimator for the corresponding l?(P ). Let
l̂ : Rk 7→ R+ an arbitrary deterministic estimation function,
term H2 in equation (69) is equivalent to:

H2 = inf
l̂

max
(
EP1

[(l̂(δX⊗k)− l?(P))2],

EP2
[(l̂(δX⊗k)− l?(P))2]

)
. (71)

To obtain the lower bound of (71), we come up with the
following optimization problem:

Problem 4.

ε? := min
ε,l̂

ε, (72a)

s.t., EP1
[(l̂(δX⊗k)− l?1)2] ≤ ε, (72b)

EP2 [(l̂(δX⊗k)− l?2)2] ≤ ε. (72c)

The minimum ε? satisfies:

ε? ≥ 1

6

(
1

24
(1− δ)δp?w, uni

)2
1

k
. (73)

Detailed proof is provided in Appendix E.
Step 3: Plugging (70) and (73) into (69), we have:

inf
π

sup
P

Υk ≥
1

24

(
1

24
(1− δ)δp?w, uni

)2
1

k
. (74)

Summing up Υk from k′ = {1, 2, · · · , k} and plugging (74)
into (67), we have:

inf
π

E

[∫ Sk+1

0

(Xt − X̂t)
2dt− (γ? +D)Sk+1

]

≥
k∑

k′=1

inf
π

sup
P

Υk −DE[Lk]

=

k∑
k′=1

inf
π

sup
P

Υk −D(E[Lk]− l?(P))−Dl?(P)

≥ 1

24

(
1

24
(1− δ)δp?w, uni

)2

×

(
k∑

k′=1

1

k′

)
= Ω(ln k). (75)

APPENDIX E
SOLUTION TO PROBLEM 4

We use the Lagrange method for solving the optimization
problem. Let ρ(·) : Rk 7→ R and λ1, λ2 ≥ 0 be Lagrange
multipliers, the Lagrange function for solving Problem 4 is as
follows:

L(ε, l̂, λ1, λ2) =ε+ λ1(EP1
[(l̂(δX⊗k)− l?1)2]− ε)

+ λ2(EP2
[(l̂(δX⊗k)− l?2)2]− ε). (76)

The Gâteaux derivative of the Lagrange L in the direction of
ρ(·) : Rk 7→ R is defined as

δL(l̂; ε, λ1, λ2, ρ)

:= lim
ε→0

L(ε, l̂ + ερ, λ1, λ2)− L(ε, l̂, λ1, λ2)

ε

=2ρ(δX⊗k)
(
λ1p1(δX⊗k)(l̂(δX⊗k)− l?1)

+ λ2p2(δX⊗k)(l̂(δX⊗k)− l?2)
)
. (77)

Let (l̂?, ε?, λ?1, λ
?
2) be the dual optimizer. To satisfy the KKT

condition, we require:

δL(l̂; ε?, λ?1, λ
?
2, ρ)

∣∣∣
l̂=l̂?

= 0,∀ρ, (78a)

∂L(l̂; ε?, λ?1, λ
?
2, ρ)

∂ε

∣∣∣
ε=ε?

= 1− (λ?1 + λ?2) = 0, (78b)

(78c)

and the Complete Slackness (CS) condition require:

λ?1

(
EP1

[(
l̂?(δX⊗k)− l?1

)2
]
− ε?

)
= 0, (78d)

λ?2

(
EP2

[(
l̂?(δX⊗k)− l?2

)2
]
− ε?

)
= 0, (78e)

The KKT condition in equation (78a) implies the optimum
estimator l̂? is:

l̂?(δX⊗k) =
λ?1p1(δX⊗k)l?1 + λ?2p2(δX⊗k)l?2
λ?1p1(δX⊗k) + λ?2p2(δX⊗k)

, (78f)

and equation (78b) requires:

λ?1 + λ?2 = 1. (78g)

It can be verified that λ?1 6= 0 and λ?2 6= 0 because if λ?1 = 0,
to satisfy equation (78f), we have l̂?(δX⊗k) ≡ l?2 . Then ε? =
(l?2 − l?1)2 is clearly not the optimum value. Then for fixed
λ1, λ2, by plugging function (78f) into (78d) and (78e), we
have:

ε? =EP1

[
(l̂?(δX⊗k)− l?1)2

]
=(l?2 − l?1)2

∫
(λ?2p2(δX⊗k))2p1(δX⊗k)

(λ?1p1(δX⊗k) + λ?2p2(δX⊗k))2
dδX⊗k,

(79)

ε? =EP2

[
(l̂?(δX⊗k)− l?2)2

]
=(l?2 − l?1)2

∫
(λ?1p1(δX⊗k))2p2(δX⊗k)

(λ?1p1(δX⊗k) + λ?2p2(δX⊗k))2
dδX⊗k.

(80)

Since λ?1 + λ?2 = 1, (79) and (80) imply:

ε? = λ?1ε
? + λ?2ε

?

= λ?1EP1

[
(l̂?(δX⊗k)− l?1)2

]
+ λ?2EP2

[
(l̂?(δX⊗k)− l?2)2

]
= (l?2 − l?1)2

∫
λ?1p1(δX⊗k)× λ?2p2(δX⊗k)

λ?1p1(δX⊗k) + λ?2p2(δX⊗k)
dδX⊗k

(f)

≥ (l?2 − l?1)2

∫
1

2
min{λ?1p1(δX⊗k), λ?2p2(δX⊗k)}dδX⊗k
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≥ 1

2
(l?2 − l?1)2 min{λ?1, λ?2}

(
P⊗k1 ∧ P⊗k2

)
. (81)

where inequality (f) is because a×b
a+b ≥

1
2 min{a, b}.

Next, we bound each term in (81) respectively.
Term 1 The lower bound of l?2 − l?1 is as follows:

l?2 − l?1 =

∫ 1

0

E
[
max{3γ?2 , Z2

D}|D = x
]

dx

+

∫ 1

1−δ/2

c√
k
E
[
max{3γ?2 , Z2

D}|D = x
]

dx

−
∫ δ/2

0

c√
k
E
[
max{3γ?2 , Z2

D}|D = x
]

dx

−
∫ 1

0

E
[
max{3γ?1 , Z2

D}|D = x
]

dx. (82)

Notice that if x1 ≥ x2,

E[max{3γ, Z2
D}|D = x1]− E[max{3γ, Z2

D}|D = x2] ≥ 0.
(83)

Therefore, inequality (82) can be bounded by:

l?2 − l?1 ≥
∫ 1

0

E
[
max{3γ?2 , Z2

D}|D = x
]

dx

−
∫ 1

0

E
[
max{3γ?1 , Z2

D}|D = x
]

dx

≥3(γ?2 − γ?1)ED∼P1
[Pr(Z2

D ≤ 3γ?1 )]

(g)

≥ 1

24
(1− δ)δcp?w, uni

√
1

k
, (84)

where inequality (g) is obtained by equation (61).
Term 2 To lower bound min{λ1, λ2}, recall that equation (79)
equals (80), we have:

(λ?2)2

∫
p1(δX⊗k)× p2(δX⊗k)

λ?1p1(δX⊗k) + λ?2p2(δX⊗k)
p2(δX⊗k)dδX⊗k

=(λ?1)2

∫
p1(δX⊗k)× p2(δX⊗k)

λ?1p1(δX⊗k) + λ?2p2(δX⊗k)
p1(δX⊗k)dδX⊗k.

(85)

Equation (85) implies we can upper and lower bound λ1/λ2

as follows:

inf

√
p2(δX⊗k)

p1(δX⊗k)
≤ λ1

λ2
≤ sup

√
p2(δX⊗k)

p1(δX⊗k)
. (86)

According to the density function defined in (52), we have:√
1− c

√
1

k
≤ λ1

λ2
≤

√
1 + c

√
1

k
(87)

Since c ≤ 1/2, we have
√

1/2 ≤ λ1

λ2
≤
√

3/2 and therefore

min{λ1, λ2} ≥ 1/3. (88)

.
Finally,

(
P⊗k1 ∧ P⊗k2

)
≥ 1/2 according to (65). Plugging

(84) and (88) into (81), we have:

H2 ≥
1

6

(
1

24
(1− δ)δcp?w, uni

)2
1

k
. (89)

APPENDIX F
PROOF OF THEOREM 3

Notice that the waiting time Wk ≥ 0,∀k, we have:

lim inf
k→∞

1

k

k∑
k′=1

(Dk′+Wk′) ≥ lim inf
k→∞

1

k

k∑
k′=1

Dk′ = D > 0,w.p.1.

(90)

Therefore, to show sequence {
∫ Sk+1
0 (Xt−X̂t)2dt

Sk+1
} converges

to Eπ? with probability 1, it is sufficient to show that the
following sequence

θk :=
1

k

∫ Sk+1

0

(Xt − X̂t)
2dt− (γ? +D)Sk+1

=
1

k

k∑
k′=1

(∫ Sk′+1

Sk′

(Xt − X̂t)
2dt− (γ? +D)Lk′

)
(91)

converges to 0 with probability 1.
Recall that Ek′ =

∫ Sk′+1

Sk′
(Xt − X̂t)

2dt is the cumulative
error in frame k′, we can rewrite θk in the following recursive
form:

θk =
1

k

(
(k − 1)θk−1 + Ek − (γ? +D)Lk

)
=θk−1 +

1

k

(
−θk−1 + Ek − (γ? +D)Lk

)
. (92)

For notational simplicity, denote Gk :=(
−θk−1 + Ek − (γ? +D)Lk

)
, which can be viewed as

the descent direction and can be further decomposed into:

Gk =− θk−1 +

∫ Sk+Dk

Sk

(Xt −XSk−1
)2dt

+

∫ Sk+Dk+Wk

Sk+Dk

(Xt −XSk)2dt− (γ? +D)Lk

=− θk−1 +

∫ Sk+Dk

Sk

(Xt −XSk +XSk −XSk−1
)2dt

+

∫ Sk+1

Sk

(Xt −XSk)2dt− (γ? +D)Lk

=− θk−1 + (XSk −XSk−1
)2Dk︸ ︷︷ ︸

=:Gk,1

+ 2 (XSk −XSk−1
) ·
∫ Sk+Dk

Sk

(Xt −XSk)dt︸ ︷︷ ︸
=:Gk,2

+

∫ Sk+1

Sk

(Xt −XSk)2dt︸ ︷︷ ︸
=:Gk,3

− (γ? +D)Lk︸ ︷︷ ︸
=:Gk,4

. (93)

Give historical transmissionsHk−1, γk can be predicted and
XSk−XSk−1

is fixed, Xt−XSk evolves like a Wiener process
and is independent of XSk−XSk−1

. Therefore, the conditional
mean of Gk,1, · · · , Gk,4 can be computed as follows:

Ek [Gk,1] =D(XSk −XSk−1
)2, (94a)

Ek [Gk,2] =0, (94b)

Ek [Gk,3] =
1

6
Ek
[
max{3γk, Z2

D}2
]

= q(γk), (94c)
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Ek [Gk,4] =(γ? +D)Ek
[
max{3γk, Z2

D}
]

= (γ? +D)l(γk).
(94d)

where equation (94a) is because Dk is independent of XSk −
XSk−1

; equation (94b) is because Xt − XSk is independent
of XSk − XSk−1

and has mean 0 for all t ≥ Sk; equation
(94c) and (94d) is because of Lemma 2. With equation (94a)-
(94d), given historical transmissions Hk−1, we can compute
the conditional expectation of Gk as follows:

Ek[Gk]

=Ek [−θk−1 +Gk,1 + 2Gk,2 +Gk,3 −Gk,4]

=− θk−1 + (XSk −XSk−1
)2D + q(γk)− (γ? +D)l(γk)

=− θk−1 + q(γk)− γkl(γk) +D (l(γk−1)− l(γk))︸ ︷︷ ︸
=:βk,1

+D
((
XSk −XSk−1

)2 − l(γk−1)
)

︸ ︷︷ ︸
=:βk,2

+ (γk − γ?)l(γk)︸ ︷︷ ︸
=:βk,3

.

(95)

Denote function

f(θ, γ) := −θ + E
[

1

6
max{3γ, Z2

D}2 − γmax{3γ, Z2
D}
]
,

(96)
and let function f(·) be:

f(θ) := f(θ, γ?). (97)

In the following analysis, we will prove that sequence {θk}
converges to the stationary point of an ODE induced by
function f(θ). Let δMk := Gk − Ek[Gk] and let δMk,i :=
Gk,i−Ek [Gk,i] be the difference between each term and their
conditional mean. We view 1

k =: εk as the updating step-sizes,
which satisfies: ∑

k

εk =∞,
∑
k

ε2k <∞. (98)

With εk, βk,1, βk,2 and δMk, the recursive equation (93) can
be rewritten as follows:

θk = θk−1 + εk (f(θk−1, γk) + βk,1 + βk,2 + βk,3 + δMk) .
(99)

Similarly, denote t0 = 0 and tk :=
∑k−1
i=0 εi to be

the cumulative step-size sequences. Let m(t) be the unique
k ∈ N+ such that tm(t) ≤ t < tm(t) + 1. We then state the
following characteristics of Gk and δMk, detailed proofs are
in Appendix G:

Claim 1. Sequences {Gk} and {δMk} have the following
properties:

(2.1) For each constant N , supk E
[
|Gk|I(|θk|≤N)

]
<∞.

(2.2) Function f(e, γ) is continuous in e for each γ.
(2.3) For any T > 0, the following limit hold for all θ:

lim
k→∞

Pr

sup
j≥k

max
0≤t≤T

∣∣∣∣∣∣
m(jT+t)−1∑
i=m(jT )

εi
(
f(θ, γi)− f(θ)

)∣∣∣∣∣∣ ≥ µ


= 0. (100)

(2.4) For any T > 0, the difference sequence satisfies:

lim
k→∞

Pr

(
sup
j≥k

max
0≤t≤T

∣∣∣∣∣
j∑
i=k

εiδMi

∣∣∣∣∣ ≥ µ
)

= 0. (101)

(2.5) The bias sequence satisfies:

lim
k→∞

Pr

sup
j≥k

max
0≤t≤T

∣∣∣∣∣∣
m(jT+t)−1∑
i=m(jT )

εi(βi,1 + βi,2 + βi,3)

∣∣∣∣∣∣ ≥ µ


= 0. (102)

(2.6) For each θ, function f can be bounded as follows:

f(θ, γ) = f(θ) + ρ(γ), (103)

where ρ(γ) = −(q(γ) − γl(γ)) and for any τ > 0 we have
the following inequality:

lim
k→∞

Pr

sup
j≥n

m(jτ+τ)−1∑
i=m(jτ)

|εiρ(γk)|

 = 0. (104)

(2.7) For each θ1, θ2, the difference

|f(θ1, γ)− f(θ2, γ)| = |θ1 − θ2| . (105)

When θ1 − θ2 → 0, the absolute difference |θ1 − θ2| → 0.
Denote θk(ω) as the time averaged MSE up to frame k of

sample path ω. Then according to [24, p.166, Theorem 1.1],
with probability 1, sequence {θk(ω)} converges to some limit
set of the ODE

θ̇ = f(θ) = −θ. (106)

Because f(0) = 0, the minimum error θ = 0 is an
equilibrium point of the ODE in equation (106). Moreover,
as f(·) is a monotonic decreasing function, it can be easily
verified through Lyapunov stability criterion that 0 is a unique
stability point of the ODE (106). Therefore, θk converges to 0
with probability 1, and the time averaged MSE converges to
Eπ? with probability 1.

APPENDIX G
PROOF OF CLAIM 1

Before we starts to prove each condition in Claim 1, we
provide the following corollary from Theorem 2:

Corollary 3. There exists a Γ <∞ so that E[(γk−γ?)2/ηk] <
Γ,∀k. Recall that the step-sizes is selected to be ηk = 1

4Dlbkα
,

where α ∈ (0.5, 1], we then have:

E[(γk − γ?)2] ≤ DlbΓ

2kα
<∞, (107)

E[γ2
k] ≤ 2(E[(γk − γ?)2] + (γ?)2) <∞. (108)

Through Cauchy-Schwarz inequality, we have:

E [|γk − γ?|] ≤
√
E[(γk − γ?)2] ≤

√
DlbΓ

2kα
. (109)

(2.1): According to the definition of Gk from equation (92),
the expectation E

[
|Gk|I|θk|≤N

]
can be upper bound as fol-

lows:

E
[
|Gk|I(|θk|≤N)

]
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≤E
[
|θk|I(|θk|≤N)

]
+ E

[∫ Sk+1

t=Sk

(Xt − X̂t)
2dt

]
+ E [γkLk] .

(110)

The first term on the RHS of inequality (110) satisfies

sup
k

E
[
|θk|I(|θk|≤N)

]
≤ N <∞. (111)

The expectation of the second term can be computed as
follows,

E

[∫ Sk+1

t=Sk

(Xt − X̂t)
2dt

]

=E

[∫ Sk+Dk

t=Sk

(Xt −XSk +XSk −XSk−1
)2dt

+

∫ Sk+Dk+Wk

Sk+Dk

(Xt −XSk)2dt

]
=E

[
(XSk −XSk−1

)2Dk

]
+ 2E

[
(XSk −XSk−1

)

∫ Sk+Dk

t=Sk

(Xt −XSk)dt

]

+ E

[∫ Sk+1

t=Sk

(Xt −XSk)2dt

]
=E

[
max{3γk−1, Z

2
D}
]
D +

1

6
E
[
max{3γk, Z2

D}2
]

≤E[3γk−1]D +
1

6
E[(3γk)2] +DB1/4 +

1

2

√
B. (112)

Inequality (108) and (109) implies inequality (112) is bounded
for all k. Therefore, the second term on the RHS of inequality
(110) can be upper bounded as follows:

sup
k

E

[∫ Sk+1

t=Sk

(Xt − X̂t)
2dt

]

= sup
k

(
E
[
max{3γk−1, Z

2
D}
]
D +

1

6
E
[
max{3γk, Z2

D}
])

<∞. (113)

Similarly, since E[γ2
k] <∞ is bounded by (108) is bounded,

we can upper bound the third term on the RHS of inequality
(110) as follows:

sup
k

E [γkLk] = sup
k

E
[
γk max{3γk, Z2

D}
]
<∞. (114)

Taking the supremum of inequality (110) and then plugging
equality (111)-(113) into the inequality verifies Claim (2.1).

Notice that statement (2.3)-(2.7) has similar forms,

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiψi

∣∣∣∣∣ ≥ µ
)

= 0. (115)

where ψk can be the bias term βk,i, the martingale sequence
δMk or the difference f(θ, γk) − f(θ) and ρ(γk). We then
provide the following lemma:

Lemma 7. If one of the following condition holds, then (115)
holds:

(S.1) ψk is a martingale sequence and supk E[ψ2
k] < ∞.

The correlation satisfies E[ψiψj ] = 0,∀i 6= j.

(S.2) E[|ψk|] = O(k−ζ), ζ > 0.

Proof. If condition (S.1) holds, since εk = 1
k satisfies∑

k ε
2
k < ∞, equality (115) holds because of [24, p. 172,

example 3].
If condition (S.2) holds, there exists a Ψ so that

E[ψk] = Ψk−ζ . For each µ > 0, we first upper bound
Pr
(

supj≥k

∣∣∣∑j
i=k εiψi

∣∣∣ ≥ µ) for each k as follows:

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiψi

∣∣∣∣∣ ≥ µ
)
≤ Pr

( ∞∑
i=k

εi|ψi| ≥ µ

)
(a)

≤ 1

µ
E

[ ∞∑
i=k

i−1 |ψi|

]
(b)

≤ Ψ

µ

( ∞∑
i=k

i−1−ζ

)
=

Ψ

µζ
(k − 1)−ζ .

(116)

where inequality (a) is from the Markov inequality; inequality
(b) is from statement (S.2). Finally, taking the limit of (116)
yields (115).

(2.2): Since function f(θ, γ; δX) := −θ+ 1
6 max{3γ, δX2}2−

γmax{3γ, δX2} is continuous for each δX , the expectation
f(θ) = E[f(θ, γ?; δX2)] is continuous for θ.
(2.3): Recall the definition of f(θ, γ) and f(γ) from equa-
tion (96), (97). The absolute difference between f(θ, γ) and
f(θ) can be upper bounded by:∣∣f(θ, γ)− f(θ)

∣∣ = |g0(γ)− g0(γ?)|
(a)

≤3(γ − γ?)2 + 3|γ − γ?|D, (117)

where inequality (a) is because function g0(γ) is concave
and |g′′0(γ)| < 3 according to Lemma 5-(i). Therefore
E[|f(θ, γ) − f(θ)|] = O(k−α/2), which satisfies statement
(S.2) in Lemma 7. This verifies inequality (100).
(2.4): The difference δMk = δMk,1+2δMk,2+δMk,3−δMk,4

consists of four parts. Through the union bound, the proba-
bility that supj≥k

∣∣∣∑j
i=k εiδMi

∣∣∣ ≥ µ can be upper bounded
by:

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiδMi

∣∣∣∣∣ ≥ µ
)

≤
4∑
a=1

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiδMi,a

∣∣∣∣∣ ≥ µ/5
)
. (118)

We will then show that each item on the RHS of in-
equality (118) has limit 0. The first term δMk,1 = (XSk −
XSk−1

)2
(
Dk −D

)
. Since Dk−D depends only on the delay

in frame k and has mean zero, term E[δMk,1δMk+i,1] =
0,∀i > 0. The second moment of δMk,1 can be upper bounded
as follows:

E
[
(XSk −XSk−1

)4(Dk −D)2
]

=E
[
(XSk −XSk−1

)4
]

Var[D2] ≤ E
[
max{3γk, Z2

D}2
]
E[D2].
(119)

By Theorem 2, the expectation E[(γk − γ?)2/ηk] =
O(1). Since ηk → 0, E[γ2

k] is bounded. Therefore,
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supk E
[
δM2

k,1

]
≤ ∞. Then according to [24, p.142,

Eq. (5.3.18)]

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiδMi,1

∣∣∣∣∣ ≥ µ/5
)

= 0. (120)

Similarly, recall that δMk,2 = (XSk − XSk−1
) ·(∫ Sk+Dk

Sk
(Xt −XSk)dt

)
. Sequence δMk,2 is a martingale se-

quence with mean zero. Moreover, E[Mk,2Mk+i,2] = 0,∀i ≥
1. The variance Var[δMk,2] can be bounded as follows:

Var[δMk,2] = E[δM2
k,2]

=E
[
(XSk −XSk−1

)2
]
· E

(∫ Sk+Dk

t=Sk

(Xt −XSk)dt

)2


=E
[
max{3γk−1, Z

2
D}
]
· E[D2]. (121)

Inequality (109) upper bounds E[max{3γk−1, Z
2
D}] and

verifies (S.1) in Lemma 7. Therefore, we have:

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiδMi,2

∣∣∣∣∣ ≥ µ/5
)

= 0. (122)

It can be verified that the sequence δMk,3 =
∫ Sk+1

Sk
(Xt −

XSk)2dt − Ek
[∫ Sk+1

Sk
(Xt −XSk)2dt

]
is a martingale se-

quence. It then remains to upper bound its variance, which
is as follows:

Var[δMk,3]

=E

(∫ Sk+Dk

Sk

(Xt −XSk)2dt−
∫ Sk+1

Sk+Dk

(Xt −XSk)2dt

)2


(c)

≤2E

(∫ Sk+Dk

Sk

(Xt −XSk)2dt

)2


+ 2E

(∫ Sk+1

Sk+Dk

(Xt −XSk)2dt

)2


(d)

≤2E

(∫ Sk+Dk

Sk

(Xt −XSk)2dt

)2


+ 2E
[
Pr(Z2

D ≥ 3γk)(3γk)2Ek[L2
k]
]

(e)

≤N1 + E
[
E[Z4

D](
10

3
(3γk)2 + 3

√
B)

]
, (123)

where inequality (c) is because E[(a − b)2] ≤ 2E[a2 + b2];
inequality (d) is because if Lk ≥ Dk, then (Xt−XSk)2 ≤ 3γk
for t ∈ [Sk + Dk, Sk+1]; inequality (e) is because through
Markov inequality Pr(Z2

D ≥ 3γk) ≤ E[Z4
D]/(3γk)2 and

Ek[L2
k] ≤ ( 10

3 (3γk)2 + 3
√
B) from Lemma 4. Since E[Z4

D] ≤
3E[D2] < 3

√
B and E[γ2

k] is bounded according to inequality
(108), Var[δMk,3] is bounded according to inequality (123).
Condition (S.1) in Lemma 7 is satisfied and we have

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiδMi,3

∣∣∣∣∣ ≥ µ/5
)

= 0. (124)

Following similar approaches, the second order expansion
of the fourth term is bounded, i.e.,

Var[δMk,4] ≤ Ek[Gk,4] ≤ (γ? +D)2 · 10

3

(
3γ2
k + 3

√
B
)
.

(125)
Again using Lemma 7 condition (S.1), we have:

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiδMi,4

∣∣∣∣∣ ≥ µ/5
)

= 0. (126)

Plugging inequalities (120), (122), (124) and (126) into
(118) completes the proof of (102).
(2.5): Through the union bound we have:

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εi(βi,1 + βi,2 + βi,3)

∣∣∣∣∣ ≥ µ
)

≤
3∑
a=1

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiβi,a

∣∣∣∣∣ ≥ µ/3
)
. (127)

For simplicity, define event

Aa,k , sup
j≥k

∣∣∣∣∣
j∑
i=k

εiβi,a

∣∣∣∣∣ ≥ µ/3.
We then upper bound the probability Pr(Aa,k) and analyz-

ing their asymptotic performance.
To upper bound event A1,k, we need to upper bound the

expectation of βk,1 defined in (95) as follows:

E [|βk,1|]
(f)
=DE

[∣∣Ek[3γk−1, Z
2
D]− Ek[3γk, Z

2
D]
∣∣]

=D
(
E[3γk−1, Z

2
D]− E[3γ?, Z2

D] + E[3γ?, Z2
D]− E[3γk, Z

2
D]
)

≤3DE [|γk−1 − γ?|+ |γk − γ?|]
(g)
=O(k−α), (128)

where equality (f) is from definition (95), equality (g) is from
inequality (109). Since α ∈ (0.5, 1], which satisfies condition
(S.2) in Lemma 7. We have:

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiβi,1

∣∣∣∣∣ ≥ µ/3
)

= 0. (129)

Next we upper bound Pr(A2,k) and analyzing its asymptotic
behavior. Variable βk,2 has mean zero because

E[βk,2] =E
[
Ek
[
(XSk−1+Dk−1

−XSk−1
)2
]
− l(γk−1)

]
= max{3γk−1, Z

2
D} − l(γk−1) = 0. (130)

The variance of βk,2 is upper bounded by

Var
[
D
(
(XSk −XSk−1

)2 − l(γk−1)
)]

=D
2E
[
max{3γk−1, Z

2
D}2

] (h)
< ∞, (131)

where inequality (h) is due to (108). Using condition (S.1)
Lemma 7, we have:

lim
k→∞

Pr

(
sup
j≥k

∣∣∣∣∣
j∑
i=k

εiβi,2

∣∣∣∣∣ ≥ µ/3
)

= 0. (132)
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Finally the third bias term satisfies E[|βk,3|] = E[l(γk) ·
|γk − γ?|] ≤

√
E[max{3γk, Z2

D}]2E[(γk − γ?)2]. Since
E[max{3γk, Z2

D}] ≤ E[3γk] + D is bounded according to
(109) and E[(γk − γ?)2] = O(k−α), E[|βk,3|] = O(k−α).
Condition (S.2) in Lemma 7 is verified and we have

lim
k→∞

Pr

(
sup
j≥k

j∑
i=k

εiβi,3 ≥ µ/3

)
= 0. (133)

Plugging (129), (132) and (133) into (127) verifies statement
(2.5).
(2.6): Function ρ(γ) ≤ l(γ?)|γ − γ?| + 3

2 (γ − γ?)2. Since
E[|γ− γ?|2] = O(k−α) and E[|γ− γ?|] = O(k−α/2) satisfies
condition (S.2) in Lemma 7, statement (2.6) is verified.
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[6] A. Nayyar, T. Başar, D. Teneketzis, and V. V. Veeravalli, “Optimal
strategies for communication and remote estimation with an energy
harvesting sensor,” IEEE Transactions on Automatic Control, vol. 58,
no. 9, pp. 2246–2260, 2013.

[7] Y. Sun, Y. Polyanskiy, and E. Uysal, “Sampling of the wiener process for
remote estimation over a channel with random delay,” IEEE Transactions
on Information Theory, vol. 66, no. 2, pp. 1118–1135, 2020.

[8] C.-H. Tsai and C.-C. Wang, “Unifying aoi minimization and remote
estimation—optimal sensor/controller coordination with random two-
way delay,” IEEE/ACM Transactions on Networking, vol. 30, no. 1, pp.
229–242, 2022.

[9] T. Z. Ornee and Y. Sun, “Performance bounds for sampling and remote
estimation of gauss-markov processes over a noisy channel with random
delay,” in 2021 IEEE 22nd International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), 2021, pp. 1–5.

[10] Z. Wang, M.-A. Badiu, and J. P. Coon, “Relationship between
age and value of information for a noisy ornstein–uhlenbeck
process,” Entropy, vol. 23, no. 8, 2021. [Online]. Available:
https://www.mdpi.com/1099-4300/23/8/940

[11] C.-H. Tsai and C.-C. Wang, “Age-of-information revisited: Two-way
delay and distribution-oblivious online algorithm,” in 2020 IEEE In-
ternational Symposium on Information Theory (ISIT), 2020, pp. 1782–
1787.

[12] K. Bhandari, S. Fatale, U. Narula, S. Moharir, and M. K. Hanawal,
“Age-of-information bandits,” in 2020 18th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOPT), 2020, pp. 1–8.

[13] E. U. Atay, I. Kadota, and E. Modiano, “Aging bandits: Regret anal-
ysis and order-optimal learning algorithm for wireless networks with
stochastic arrivals,” 2020.

[14] S. Banerjee, R. Bhattacharjee, and A. Sinha, “Fundamental limits of age-
of-information in stationary and non-stationary environments,” in 2020
IEEE International Symposium on Information Theory (ISIT), 2020, pp.
1741–1746.

[15] V. Tripathi and E. Modiano, “An online learning approach to optimizing
time-varying costs of aoi,” in Proceedings of the Twenty-Second Inter-
national Symposium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing (Mobihoc 2021).
New York, NY, USA: Association for Computing Machinery, 2021, p.
241–250.

[16] B. Li, “Efficient learning-based scheduling for information freshness in
wireless networks,” in IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, 2021.
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APPENDIX H
PROOF OF LEMMA 1

Proof. First we will turn the time-averaged MSE computation
into frame-level computation. For stationary policy π that
decides sampling time Sk+1 only on information Ik, tuple
{(Ik, (Sk+1 − Sk))} is a regenerative sequence. Recall that
Ek =

∫ Sk+1

Sk
(Xt − XSk)2dt and Lk := Sk+1 − Sk are the

cumulative estimation error and length of frame k, which are
both generative because policy π is stationary. Therefore, se-
quence { 1

KE
[∑K

k=1Ek

]
} and { 1

KE
[∑K

k=1 Lk

]
} have limits.

Then according to the renewal reward theory [33], the time
averaged MSE can be computed by:

lim sup
T→∞

E

[∫ T

t=0

(
Xt − X̂t

)2

dt

]

= lim sup
K→∞

E
[∑K

k=1

∫ Sk+1

Sk
(Xt −XSk−1

)2dt
]

E
[∑K

k=1 (Sk+1 − Sk)
]

= lim sup
K→∞

∑K
k=1 E

[∫ Sk+1

Sk
(Xt −XSk−1

)2dt
]

∑K
k=1 E [(Sk+1 − Sk)]

. (134)

To simplify the computation of equation 134, we will first
introduce the following lemma:

Lemma 8 (Lemma 6, [7]Restated). Let Zt be a Wiener process
starting from time zero, let τ be a stopping time of Zt, we have:

1

6
E
[
Z4
τ

]
= E

[∫ τ

0

Z2
t dt
]

(135)

Using Lemma 8, we can then compute the expected cu-
mulative estimation error during interval [Sk, Rk]. Notice that
during the interval, the k-th sample has not been received.
Therefore, the estimation error Xt − X̂t = Xt − XSk−1

can
be viewed as a Wiener process starting from time Sk−1. We
can decouple and compute the cumulative estimation error as
follows:

E

[∫ Rk

Sk

(Xt − X̂t)
2dt

]

=E

[∫ Rk

Sk−1

(Xt −XSk−1
)2dt

]
− E

[∫ Sk

Sk−1

(Xt −XSk−1
)2dt

]
=

1

6
E
[
(XRk −XSk−1

)4
]
− 1

6
E
[
(XSk −XSk−1

)4
]
. (136)

Similarly, we can then obtain that:

E

[∫ Sk+1

Rk

(Xt − X̂t)
2dt

]
=

1

6
E
[
(XSk+1

−XSk)4
]
− 1

6
E
[
(XRk −XSk)4

]
. (137)

Notice that the transmission delay Dk is i.i.d across all slots,
since we only focus on stationary policies whose waiting time
Wk relies only on recent information Ik := {Yk, (WSk+t −
WSk),∀t ≥ 0}, we have:

E[(XSk −XSk−1
)4] = E[(XSk+1

−XSk)4]

https://doi.org/10.1007/0-387-21769-X_5
http://jmlr.org/papers/v22/20-813.html
http://jmlr.org/papers/v22/20-813.html
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Therefore, by summing up (136) and (137), for any policy
π that makes decisions only on Ik, the expected cumulative
estimation error in frame k can be computed by:

E [Ek] = E

[∫ Sk+1

Sk

(Xt − X̂t)
2dt

]
=

1

6
E
[
(XRk −XSk−1

)4
]
− 1

6
E
[
(XRk −XSk)4

]
=

1

6
E
[(

(XRk −XSk) + (XSk −XSk−1
)
)4]− 1

6
E
[
(XRk −XSk)4

]
=

1

6
E
[
(XRk −XSk)4

]
+

2

3
E
[
(XRk −XSk)3(XSk −XSk−1

)
]

+ E
[
(XRk −XSk)2(XSk −XSk−1

)2
]

+
2

3
E
[
(XRk −XSk)(XSk −XSk−1

)3
]

+
1

6
E
[
(XSk −XSk−1

)4
]
− 1

6
E
[
(XRk −XSk)4

]
(a)
=E[(XRk −XSk)2(XSk −XSk−1

)2] +
1

6
E
[
(XRk −XSk)4

]
(b)
=E

[
(XRk −XSk)2

]
· E[(XSk −XSk−1

)2] +
1

6
E
[
(XSk −XSk−1

)4
]

(c)
=E[Rk − Sk] · E[Sk+1 − Sk] +

1

6
E
[
(XSk −XSk−1

)4
]

=E[Lk] ·D +
1

6
E
[
(XSk −XSk−1

)4
]
, (138)

where equality (a) is obtained because (XRk − XSk) is
independent of (XSk − XSk−1

), since E[XRk − XSk ] =
E[XSk−XSk−1

] = 0 due to Wiener process evolution, we have
E[(XRk−XSk)(XSk−XSk−1

)3] = 0, E[(XRk−XSk)3(XSk−
XSk−1

)] = 0; equality (b) is obtained because (XRk −XSk)
and (XSk − XSk−1

) are independent; and equality (c) is
because the Wald’s Lemma.

Therefore, for any stationary policy π that makes sampling
decision only on Ik, with probability 1, the objective function
in the MSE minimization problem 1 can be rewritten as:

lim sup
T→∞

E

[
1

T

∫ T

t=0

(Xt − X̂t)
2dt

]

= lim sup
K→∞

∑K
k=1

(
1
6E
[
(XSk −XSk−1

)4
]

+ E[Lk]D
)∑K

k=1 E[Lk]

= lim sup
K→∞

∑K
k=1 E

[
1
6 (XSk −XSk−1

)4
]∑K

k=1 E[Lk]
+D. (139)

APPENDIX I
PROOF OF COROLLARY 1

The cumulative MSE up to the beginning of frame k + 1
can be decomposed into:

E

[∫ Sk+1

0

(Xt − X̂t)
2dt

]
(a)
=

k∑
k′=1

E

[∫ Sk′+Dk′

Sk′

(Xt −XSk′−1
)2dt+

∫ Sk′+1

Sk′+Dk′

(Xt −XSk′ )
2dt

]

=

k∑
k′=1

E

[∫ Sk′+Dk′

Sk′

(Xt −XSk′ +XSk′ −XSk′−1
)2dt

+

∫ Sk′+1

Sk′+Dk′

(Xt −XSk′ )
2dt

]

=

k∑
k′=1

E

[∫ Sk′+Dk′

Sk′

(
(Xt −XSk′ )

2

+2(Xt −XSk′ )(XSk′ −XSk′−1
) + (XSk′ −XSk′−1

)2
)

dt

+

∫ Sk′+1

Sk′+Dk′

(Xt −XSk′ )
2dt

]
(b)
=

k∑
k′=1

E

[
(XSk′ −XSk′−1

)2Dk′ +

∫ Sk′+1

Sk′

(Xt −XSk′ )
2dt

]
(c)
=

k∑
k′=1

E[(XSk′ −XSk′−1
)2]D +

k∑
k′=1

1

6
E
[
(XSk′+1

−XSk′ )
4
]
,

(140)

where equality (a) is because X̂t = XSk−1
,∀t ∈ [Sk + Dk)

and X̂t = XSk ,∀t ∈ [Sk +Dk, Sk+1); equality (b) is because
E[Xt−XSk′ ] = 0 and because XSk′ −XSk′−1

is independent
of Dk′ ; equality (c) is because Dk′ is independent of (XSk′ −
XSk′−1

).
With equation (140), we proceed to bound the difference

E
[∫ Sk+1

0
(Xt − X̂t)

2dt
]
−(γ?+D)E

[∑k
k′=1 Lk′

]
as follows:

E

[∫ Sk+1

0

(Xt − X̂t)
2dt

]
− (γ? +D)E

[
k∑

k′=1

Lk′

]
(a)
=
������������k∑
k′=1

E[(XSk′+1
−XSk′ )

2]D +

k∑
k′=1

1

6
E
[
(XSk′+1

−XSk′ )
4
]

− γ?E[(XSk′+1 −XSk′ )
2]−

������������

D

k∑
k′=1

E[(XSk′+1 −XSk′ )
2]

=

k∑
k′=1

(E[q(γk′)− γ?l(γk′)])

=

k∑
k′=1

E [q(γk′)− γk′ l(γk′) + (γk′ − γ?)l(γk′)]

(b)

≤
k∑

k′=1

E [q(γ?)− γk′ l(γ?) + (γk′ − γ?)l(γk′)]

(c)
=

k∑
k′=1

E[(γ? − γk′)(l(γ?)− l(γk′))]

(d)

≤3

k∑
k′=1

E[(γk′ − γ?)2], (141)

where equality (a) is because of equation (140) and by
martingale stopping theorem, E[(XSk′+1

−XSk′ )
2] = E[Lk′ ];

inequality (b) is because choosing threshold γk′ minimizes
function q(γ) − γkl(γ); inequality (c) is obtained because
q(γ?) − γk′ l(γ

?) = q(γ?) − γ?l(γ?) + (γ? − γk′)l(γ
?)

and q(γ?) − γ?l(γ?) = 0 according to Lemma 5-(ii);
inequality (d) is obtained because |l(γ?) − l(γk′)| =∣∣E[max{3γ?, Z2

D}]− E[max{3γk′ , Z2
D}]
∣∣ ≤ 3|γk′ − γ?|.

APPENDIX J
PROOF OF LEMMA 3

Proof. Consider a constant wait policy πconst that chooses
Wk ≡ 1

fmax
regardless of the transmission delay and estimation
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error Ik = (Dk, (XSk+t−XSk)). Let Zt be a Wiener process
starting from time 0. Then according to equation (4a) from
Corollary 1, the time-average MSE by using policy πconst can
be computed by:

Eπconst = lim sup
K→∞

∑K
k=1 E

[
1
6 (XSk −XSk−1

)4
]∑K

k=1 E[Lk]
+D

(a)
= lim sup

K→∞

1
6

∑K
k=1 E

[
Z4
Dk+ 1

fmax

]
1
K

∑K
k=1 E[Lk]

+D

(b)
= lim sup

K→∞

1
2

∑K
k=1 E

[
(Dk + 1

fmax
)2
]

1
K

∑K
k=1 E[Lk]

+D

(c)
=

1

2

M + 2D 1
fmax

+
(

1
fmax

)2

D + 1
fmax

+D, (142)

where equality (a) is because by using policy πconst, given
transmission delay Dk, the difference XSk−1+t − XSk−1

evolves like Wiener process Zt starting from t = 0 and
Sk+1 − Sk = Dk + 1

fmax
due to the constant wait policy;

equality (b) is obtained because given delay Dk, ZDk+ 1
fmax
∼

N (0, Dk + 1
fmax

) is a zero-mean Gaussian distribution with
variance Dk + 1

fmax
, and therefore the fourth order moment

E
[
Z4
Dk+ 1

fmax

|Dk

]
= 3

(
Dk + 1

fmax

)2

; equality (c) is obtained
because Dk is i.i.d following distribution PD, by definition
M = EPD [D2] and D = EPD [D]. Since πconst may not be
the MSE minimum sampling policy, we have Eπ? ≤ Eπconst .
Therefore, recall the definition γ? = Eπ? − D from Subsec-
tion III-B, we have:

γ? ≤ Eπconst −D =
1

2

M + 2D 1
fmax

+
(

1
fmax

)2

D + 1
fmax

=: γub. (143)

We then derive the lower bound of Eπ? . Recall that the
optimum decision rule of policy π? is given in equation (9),
according to [7, Theorem 1], Eπ? can be computed by

Eπ? =
1

6

E
[
max{3 (γ? + ν?) , Z2

D}2
]

E [max{3 (γ? + ν?) , Z2
D}]

+D

(d)

≥ 1

6
E[max{3(γ? + ν?), Z2

D}] +D ≥ 1

6
E[Z2

D] +D =
7

6
D,

(144)

where inequality (d) is from Cauchy-Schwartz inequality.
Finally, γ? can be lower bonded by:

γ? = Eπ? −D ≥
1

6
D. (145)

APPENDIX K
PROOF OF LEMMA 4

For any time t, the value Zt of the Wiener process Zt ∼
N (0, t), according to [34, Theorem 7.5.6], ∀θ ∈ R, sequence
Mt(θ) := exp

(
θZt − θ2

2 t
)

is a martingale with initial value
M0(θ) = 1,∀θ.

Let T ≥ 0 fixed as a constant, then τγ ∧ T is a stopping
time, where a∧b = min{a, b}. Then according to the optional
stopping theorem [34, Theorem 7.5.1], denote φT (θ) to be the
expected value of Mτγ∧T (θ), we have:

φT (θ) := E
[
Mτγ∧T (θ)

]
= E [M0(θ)] = 1,∀θ. (146)

Therefore, the n-th order derivative of function φT (θ),
denoted by φ(n)

T (θ) can be computed by:

φ
(n)
T (θ) =

∂nE
[
Mτγ∧T (θ)

]
∂θn

= 0. (147)

For each sample path ω, the absolute value
∣∣Zlγ∧T ∣∣ ≤ √3γ.

Therefore the derivative
∣∣∣∂nMτγ∧T (θ)

∂θn

∣∣∣ is bounded and contin-
uous. Then according to Leibniz rule we have

E
[
∂nMτγ∧T (θ)

∂θn

]
=
∂nE

[
Mτγ∧T (θ)

]
∂θn

= 0. (148)

First according to [34, Theorem 7.5.1& Theorem 7.5.5],
∀γ <∞, the mean of stopping time τγ is bounded, i.e.,

E [lγ ] = E[Z2
lγ ] = E[max{3γ, Z2

D}] = 3γ +D <∞.. (149)

To obtain the second-order moment of τγ , we compute the
4-th order derivative of Mlγ∧T )(θ), i.e.,

∂4Mlγ∧T (θ)

∂θ

∣∣
θ=0

= Z4
lγ∧T − 6(lγ ∧ T ) ·Z2

lγ∧T + 3(lγ ∧ T )2.

(150)
Plugging (150) into (148), we have:

E
[
(lγ ∧ T )2

]
=2E

[
(

1√
2
lγ ∧ T ) ·

√
2Z2

lγ∧T

]
− 1

3
E
[
Z4
lγ∧T

]
≤1

2
E
[
(lγ ∧ T )2

]
+

5

3
E[Z2

lγ∧T ] (151)

Therefore, for each T < ∞, the second order moment of
(lγ ∧ T ) can be upper bounded by:

E
[
(lγ ∧ T )2

]
≤ 10

3
E
[
Z2
lγ∧T

]
=

10

3
E
[
max{3γ, Z2

D}
]
≤ 10

3
(3γ +D) <∞. (152)

Finally, we can upper bound the fourth order moment of τγ
by computing the 8-th order derivative of Mτγ∧T (θ) at θ = 0,
i.e.,

∂8Mlγ∧T (θ)

∂θ8

=Z8
lγ∧T − 28(lγ ∧ T ) · Z6

τγ∧T + 210(lγ ∧ T )2 · Z4
lγ∧T

− 420(lγ ∧ T )3 · Z2
lγ∧T + 105(lγ ∧ T )4. (153)

Plugging equation (153) into (148), we have:

E
[
(lγ ∧ T )4

]
=− 1

105
E
[
Z8
lγ∧T − 28(lγ ∧ T ) · Z6

τγ∧T

+210(lγ ∧ T )2 · Z4
τγ∧T − 420(lγ ∧ T )3 · Z2

τγ∧T

]
≤4E

[
(lγ ∧ T )3 · Z2

lγ∧T

]
+

3

15
E
[
(lγ ∧ T ) · Z6

lγ∧T

]
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≤4
(
E
[
(lγ ∧ T )4

])3/4 · (E [Z8
lγ∧T

])1/4

+
3

15

(
E
[
(lγ ∧ T )4

])1/4 · (E [Z8
lγ∧T

])3/4

≤4
(
E
[
(lγ ∧ T )4

])3/4 · ((3γ)4 + 105B
)1/4

+
3

15

(
E
[
(lγ ∧ T )4

])1/4 · ((3γ)4 + 105B
)3/4

. (154)

Inequality (154) implies

E
[
(lγ ∧ T )4

]
≤ 43

(
(3γ)4 + 105B

)
. (155)

Let T →∞ and then use the dominated convergence theorem
on the LHS of inequality (154), we conclude that E[l4γ ] is
bounded.

E[τ4
γ ] = − 1

105
(1− 28 + 350− 1708) (3γ)4 =

277

21
(3γ)4.

(156)

APPENDIX L
PROOF OF LEMMA 5

Proof. First we can compute the derivatives as follows:

d
dγ

E
[

1

6

(
(3γ)2 · I(Z2

D≤3γ) + Z4
D · I(Z2

D>3γ)

)]
=3γPr

(
Z2
D ≤ 3γ

)
. (157)

d
dγ

E
[(

3γ · I(Z2
D≤3γ) + Z2

D · I(Z2
D>3γ)

)]
=3Pr

(
Z2
D ≤ 3γ

)
(158)

Therefore, the monotonic decreasing characteristics can be
verified through

g′0(γ) = −E
[
max{3γ, Z2

D}
]
< 0 (159)

g′′0(γ) = −3Pr(Z2
D ≤ 3γ) < 0. (160)

Through Taylor expansion, since g0(γ) is monotonically
decreasing, for γ < γ? we have:

g0(γ) ≥g0(γ?) + g′0(γ?)(γ − γ?) = −l(γ?)(γ − γ?) ≥ 0.
(161)

Since γ − γ? < 0, inequality (161) implies

(γ − γ?)g0(γ) ≤ −l(γ?)(γ − γ?)2. (162)

And for γ > γ?, we have:

g0(γ)

(a)

≤E
[

1

6
max{3γ?, Z2

D}2 − γmax{3γ?, Z2
D}
]

(b)
=(γ? − γ)l(γ?). (163)

where inequality (a) is obtained because choosing the stop-
ping time to be τ = inf{t ≥ D

∣∣|Zt| ≥ √
3γ} mini-

mizes function E
[

1
6Z

4
τ − γτ

]
and equality (b) is because

E
[

1
6 max{3γ?, Z2

D}2 − γ? max{3γ?, Z2
D}
]

= 0.
Multiplying (γ − γ?) on both sides of (163) we have:

(γ − γ?)g0(γ) ≤ −l(γ?)(γ? − γ)2,∀γ > γ?. (164)

Combining (162) and (164) finishes the proof of Lemma 5-
(iii).

APPENDIX M
PROOF OF LEMMA 6

Proof. For l ≥ D, let Πl , {π|E[Z2
τ ] = l,∀π ∈ Π} whose

squared error at the time of sample is l. Next, we establish
the lower bound of E

[∫ τ
0
Z2
t dt
]

for any policy π ∈ Πl, which
can be formulated into the following optimization problem:

inf
π

E
[∫ τ

0

Z2
t dt
]
, s.t. E [τ ] = l, τ ≥ D. (165)

As is shown in [7, Theorem 7], the optimum solution to
(165) has a threshold structure, and the optimum sampling
policy for each sample path is as follows:

τ = inf{t ≥ D||Zt| ≥ λ?}, (166)

where the selection of λ? satisfies:

E[τ ] = E[Z2
τ ] = l. (167)

Through Lemma 8, we can compute the optimum solution
to (165) as follows:

E
[∫ τ

0

Z2
t dt
]

=
1

6
E[Z4

τ ] =
1

6
E
[
max{Z2

D, 3γ}2
]
. (168)

To finish the proof of inequality (68), it then remains to
lower bound (168) as follows:

1

6
E
[
max{3γ, Z2

D}2
]
− γE

[
max{3γ, Z2

D}
]
. (169)

The analysis is divided into the following two cases.
For simplicity, denote γl to be the threshold such that
E[max{Z2

D, 3γl}] = l.
• Case 1: l ≥ l(γ?), it can be easily verify that γl ≥ γ?.

Therefore, we have:

1

6
E
[
max{Z2

D, 3γl}2
]

=
1

6
(3γl)

2Pr(Z2
D ≤ 3γl) +

1

6
E
[
Z4
D · I(Z2

D ≥ 3γl)
]

=
1

6

(
E
[
(3γ?)2I(Z2

D ≤ 3γ?)
]

+ E
[
Z4
DI(Z2

D > 3γ?)
]

+E[((3γl)
2 − (3γ?)2)I(Z2

D ≤ 3γ?)]

+E[((3γl)
2 − Z4

D)I(3γ? ≤ Z2
D ≤ 3γl)]

)
(a)

≥ q(γ?) +
1

6
E
[
(3γl − 3γ?)2I(Z2

D ≤ 3γ?)
]

+
1

6
E[3γ?(3γl − 3γ?)I(Z2

D ≤ 3γ?)]

+
1

6
E
[
6γ?(3γl − Z2

D)I(3γ? ≤ Z2
D ≤ 3γl)

]
(b)

≥γ?l(γ?) +
1

6
pw(l(γl)− l(γ?))2 + γ?(l(γl)− l?)

=γ?l +
1

6
pw(l − l(γ?))2, (170)

where inequality (a) is obtained because (3γl)
2 −

(3γ?)2 = (3γl − 3γ?)2 + 2 × 3γ?(3γl − 3γ?) and
for Z2

D = x that satisfies 3γ? ≤ x ≤ 3γl,
(3γl)

2 − x2 ≥ 6γ?(3γl − x); inequality (b) is be-
cause l(γl) − l(γ?) = E

[
(3γl − 3γ?)I(Z2

D ≤ 3γ?)
]

+
E
[
(3γl − Z2

D)I(3γ? ≤ Z2
D ≤ 3γl)

]
.
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• Case 2: l ≤ l(γ?), similarly, it can be verified that 3γl ≤
3γ?. As a result:

1

6
E
[
max{Z2

D, 3γl}2
]

=
1

6
E
[
(3γl)

2I(Z2
D ≤ 3γl)

]
+

1

6
E
[
Z4
DI(Z2

D > 3γl)
]

=
1

6

(
E
[
(3γ?)2I(Z2

D ≤ 3γ?)
]

+ E
[
Z4
DI(Z2

D > 3γ?)
]

−E
[
((3γ?)2 − (3γl)

2)I(Z2
D ≤ 3γ?)

]
−E

[
(Z2

D − (3γl)
2)I(3γl ≤ Z2

D ≤ 3γ?)
])

(c)

≥q(γ?) +
1

6
E
[
(3γl − 3γ?)2I(Z2

D ≤ 3γ?)
]

+
1

6
E
[
6γ?(3γl − 3γ?)I(Z2

D ≤ 3γ?)
]

− 1

6
E
[
3γ?(3γ? − Z2

D)I(3γl ≤ Z2
D ≤ 3γ?)

]
=γ?l(γ?) + γ?E[(3γl − 3γ?)I(Z2

D ≤ 3γ?)]

+ γ?E[(3γ? − Z2
D)I(3γl ≤ Z2

D ≤ 3γ?)]

+
1

6
pw(l − l(γ?))2

=γ?l +
1

6
pw(l − l(γ?))2, (171)

where inequality (c) is obtained similarly as inequality
(a) and (b).

APPENDIX N
PROOF OF COROLLARY 2

Proof. The first conclusion follows directly from Lemma 1.
The conditional expectation of (XSk+1

−XSk)4 can be upper
bounded by:

Ek[(XSk+1
−XSk)8] = Ek

[
max{3γk, Z2

D}4
]

≤
(
(3γk)4 + 105E[D4]

)
= (3γk)4 + 105B. (172)

Finally, we can upper bounded the second order moment of
Ek as follows:

Ek
[
E2
k

]
=Ek

[(∫ Sk+Dk

Sk

(Xt −XSk−1
)2dt

+

∫ Sk+1

Sk+Dk

(Xt −XSk)2dt

)2


=Ek

[(∫ Sk+Dk

Sk

(Xt −XSk +XSk −XSk−1
)2dt

+

∫ Sk+1

Sk+Dk

(Xt −XSk)2dt

)2


=Ek
[(

(XSk −XSk−1
)2Dk

+ 2(XSk −XSk−1
) ·
∫ Sk+Dk

Sk

(Xt −XSk)dt

+

∫ Sk+1

Sk

(Xt −XSk)2dt
)2]

(c)

≤3Ek
[
(XSk −XSk−1

)4D2
k

]
+ 12Ek

(XSk −XSk−1
)2

(∫ Sk+Dk

Sk

(Xt −XSk)dt

)2


+ 3Ek

(∫ Sk+1

Sk

(Xt −XSk)2dt

)2
 , (173)

where inequality (c) is from Cauchy-Schwartz E[(a+b+c)2] ≤
3E[a2 + b2 + c2].

Since the transmission delay Dk is independent of XSk −
XSk−1

, the first term on the RHS of inequality (173) can be
upper bounded by:

Ek
[
(XSk −XSk−1

)4D2
k

]
= (XSk −XSk−1

)4E[D2]

≤ (XSk −XSk−1
)4
√
B. (174)

To upper bound the second and third term on the RHS of
inequality (173), we introduce the following Lemma, whose
proof is provided in Appendix O

Lemma 9. Recall that Zt is a wiener process staring from
time 0 and let lγ := inf{t ≥ D||Zt| ≥

√
3γ} be the frame

length when threshold γ is used. When E[D4] ≤ B, we have
the following results:

E

(∫ lγ

t=0

Ztdt

)2
 ≤

(
277

31
(3γ)4 +B

)
·

(
(3γ)2 +

(
4

3

)4

· 3
√
B

)
=: C1(γ,B), (175)

E

(∫ lγ

t=0

Z2
t dt

)2
 ≤

(
277

31
(3γ)4 +B

)
·

(
(3γ)4 +

(
8

7

)8

· 105B

)
=: C2(γ,B). (176)

Plugging inequality (175) and (176) into (173), we can
upper bound E[E2

k|γk, XSk −XSk−1
] by:

Ek[E2
k] =3(XSk −XSk−1

)4
√
B + 12C1(γk, B)(XSk −XSk−1

)2

+ 3C2(γ,B). (177)

APPENDIX O
PROOF OF LEMMA 9

Recall that lγ = inf{t ≥ D||
√
Zt| ≥

√
3γ} is a stopping

time of the Wiener process Zt starting from time 0. Then for
any time τ ≥ 0 we have:

E

(∫ lγ

t=0

Zpt dt

)2


≤E

(∫ lγ

0

(
sup

0≤t′≤lγ
|Zt′ |

)p
dt

)2

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=E

[
l2γ ·

(
sup

0≤t′≤lγ
|Zt′ |2p

)]
(a)

≤

√√√√E
[
l4γ
]
· E

[
sup

0≤t′≤lγ
|Zt′ |4p

]
, (178)

where inequality (a) from the Cauchy-Schwartz inequality.
From Lemma 4, E[l4γ ] can be bounded as follows:

E[l4γ ] ≤ 256
(
(3γ)4 + 105B

)
. (179)

Next, we prove E[sup0≤t′≤τ |Zt′ |2p] is bounded. Recall that
the stopping rule is obtained by:

lγ = inf{t ≥ D||Zt| ≥
√

3γ}. (180)

Then E
[
sup0≤t′≤lγ |Zt′ |

4p
]

can be upper bounded by:

E

[
sup

0≤t′≤lγ
|Zt′ |4p

]

=E

[(
sup

0≤t′≤lγ
|Zt′ |4p

)
· I(lγ > D)

]

+ E

[(
sup

0≤t′≤lγ
|Zt′ |4p

)
· I(lγ ≤ D)

]
(b)

≤(3γ)2p + E
[

sup
0≤t′≤D

|Zt′ |4p
]
, (181)

where inequality (b) is because if lγ > D, then we have
|Zt| ≤

√
3γ,∀t ∈ [D, lγ) and therefore sup0≤t′≤lγ |Zt′ |

4p ≤
(3γ)2p + sup0≤t′≤D |Zt′ |4p. For each D < ∞, since the
Wiener process Zt is a martingale and D is a stopping time,
for each d < ∞, we can upper bound E

[
sup0≤t′≤D |Zt′ |4p

]
as follows:

E
[

sup
0≤t′≤d

|Zt′ |4p
]

(c)

≤
(

4p

4p− 1

)4p

E
[
Z4p
d

]
(d)
=

(
4p

4p− 1

)4p
(4p)!

22p(2p)!
d2p. (182)

where inequality (c) is because of the Doob’s maximal in-
equality [35, p.54, Theorem 1.7] and equality (d) is because
Zd follows a Guassian distribution.

When the transmission delay D is fourth order bounded,
for p = 1 and 2, plugging E[D4] ≤ B and E[D2] ≤

√
B into

inequality (182) and (181), we have:

E

[
sup

0≤t′≤lγ
|Zt′ |4

]
≤(3γ)2 +

(
4

3

)4

· 3E[D2]

≤(3γ)2 +

(
4

3

)4

· 3
√
B, (183)

E

[
sup

0≤t′≤lγ
|Zt′ |8

]
≤(3γ)4 +

(
8

7

)8

· 105E[D4]

≤(3γ)4 +

(
8

7

)8

· 105B. (184)

Plugging inequality (184), (183) and (179) into inequality
(178), we have:

E

(∫ lγ

t=0

Ztdt

)2
 ≤256

(
(3γ)4 + 105B

)
×

(
(3γ)2 +

(
4

3

)4

· 3
√
B

)
, (185)

E

(∫ lγ

t=0

Z2
t dt

)2
 ≤256

(
(3γ)4 + 105B

)
×

(
(3γ)4 +

(
8

7

)8

· 105B

)
. (186)
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