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Abstract—In this paper, we consider a discrete time transmitter-
receiver pair with K error-prone transmission channels. In each
slot, packets arrive at the transmitter randomly and wait in
the queue before they are successfully delivered to the receiver.
The goal is to design an adaptive channel selection strategy to
minimize the queue length over T consecutive slots in the absence
of packet-loss probabilities. We categorize the current queueing
status into two classes: (1) when the queue is empty, we fully
explore all the channels through uniform sampling; (2) when
there are untransmitted packets in the queue, we balance the
explore-exploit trade-off using information directed sampling. We
prove that the proposed algorithm reaches a time cumulative
queue length regret of order O(1). Simulation results validate
the effectiveness of the proposed algorithm.

I. INTRODUCTION

High Dynamic Range (HDR) and Ultra High Definition
(UHD) video streaming, 4K live broadcasting applications
require communications to be ultra high reliable and low
latency [1]. Due to the limited communication resources, the
transmitter needs to figure out the best transmission strategy.
However, the statistical information (e.g., packet-loss proba-
bilities of each channel) is hard to obtain and it is important
to design online algorithm that identifies the best transmission
strategy as soon as possible.

Channel and link rate selection in the absence of channel
statistical information has been an important research problem
over the years. The well known Max-Weight strategy [2]
stabilizes the queue length for each node in multi-hop networks
when the arrival rate of the packets is within the stability region
of the system [3]. However, it incurs high transmission delay
when the total throughput of the entire network approaches the
stability region. To reduce the transmission delay, [4] combined
learning algorithm with the Max-Weight policy for BS activa-
tion and Huang et al. proposed an online scheduling algorithm
through dual learning [5]. Although those proposed algorithms
can effectively minimize the average queue length compared
with the Max-Weight algorithm, the theoretic behaviour of the
queue length regret is not fully understood.

The multi-arm bandit algorithms (MAB) provide efficient
solutions to online sequential decision making problems with
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theoretic guarantees [6]. The cost of unknown statistical in-
formation is characterized through the cumulative regret, i.e.,
the difference between the expected cumulative cost of the
proposed algorithm and optimum algorithm when the statistical
information is known. Lai and Robbins showed in [7] that the
regret of classic MAB grows at least with order O(log T ) with
time T and the UCB/Thompson sampling algorithms have been
shown to approach this convergence bound. Notice that the
convergence result from [7] is established under the condition
that cost occurs in every slot, while in a queuing system, no
cost is incurred when the queue is empty and the convergence
bound is O(1). This calls for more dedicated design for online
channel selection for approaching the converse bound.

Recently, [8] proposes an online channel selection algorithm
by dividing time slots into busy and empty periods based
on the queuing states of the system. When the queue is
empty, the transmitter fully explores the channel states by
uniformly selecting each channel and UCB based algorithm
is used to balance the explore-exploit trade-off during the
busy period. Notice that both UCB and Thompson sampling
algorithms perform poorly when the prior distributions of the
bandits are complex. In this paper, we aim at improving the
online channel selection algorithm from [8] by utilizing the
information directed sampling algorithm (IDS) [9] during the
busy periods. By quantifying the benefit and cost of exploration
as the mutual information gain and the difference of empirical
reward respectively, the average cost-per-bit of choosing a sub-
optimal action can be defined as the mutual information gain
divided by the difference of the empirical reward. The proposed
IDS algorithm thus optimizes the explore-exploit trade-off by
minimizing the cost-per-bit information and therefore achieves
a smaller cumulative queue length regret.

The rest of this paper is organized as follows: We present
the system model and formulate the optimization problem
in Section II. Section III introduces our designed Uniformly
Exploration and Information Directed Stabilizing Algorithm
(UE-IDS). The performance of the proposed algorithm is
validated through numerical simulations in Section IV and
Section V draws the conclusion.
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II. PROBLEM FORMULATION

We consider a transmitter sending information packets to
the receiver via K erroneous channels, as depicted in Fig. 1.
Let the time be slotted, and the index of the current slot is
denoted by t = 0, 1, · · · , T . At the beginning of each slot,
packets arrive randomly at the transmitter. Let A(t) = 1 be
the identification a packet has arrived in slot t; otherwise
A(t) = 0. We assume each A(t) is i.i.d and follows the
Bernoulli distribution with E[A(t)] = λ, λ ∈ (0, 1]. In each slot
t, due to the wireless interference constraint, the transmitter
can select only one of K channels for sending out packets.
We assume each transmission attempt takes one slot and if
the transmitted packet is successfully received, we denote
X(t) = 1, and an ACK will be received at the transmitter by
the end of slot t. Let i(t) ∈ [K] be the index of the selected
channel. Note that the quality of each channel is different, we
assume when i(t) = i, the transmission outcome X(t) = Xi(t)
satisfies Bernoulli process with E[X(t)] = µi, and X(t) is
independent of X(t′) in other slots.

Assumption 1: We assume that the arrival rate is within the
stability region of the system. At least one service rate is larger
than the arrival rate, i.e., µi∗ > λ.

We assume the untransmitted packets wait in the queue at the
transmitter, and let Q(t) be the queue-length at the beginning
of slot t. Notice that X(t) is also the number of transmitted
packets in slot t, then the evolution of the queue length Q(t)
is as follows:

Q(t+ 1) = (Q(t)−X(t))+ +A(t), (1)

where (·)+ = max{0, ·}. We assume that when the queue is
empty, i.e., Q(t) = 0, the transmitter can also select a channel
to send testing packets and obtain feedback X(t) of channel
i(t).

Fig. 1. System Model

Assume that the transmission statistics {µi}Ki=1 is un-
known to the transmitter, the goal of our research
is to minimize the expected cumulative queue length
by designing a transmission strategy π(t) in each slot
t using the historical transmission feedback Ft−1 :=
σ ({(i(0), X(0)), · · · , (i(t− 1), X(t− 1))}), where σ(·) is the
σ−algebra generated by random variables. Let Qπ(t) be the
queue length by using scheduling policy π in slot t. The
problem is organized as follows:

Problem:

min
π

E

[
T−1∑
t=0

Qπ(t)

]
,

where π : Ft−1 → i(t). (2)

Notice that when {µi}Ki=1 is known, the optimum policy π∗

that minimizes the queue length is π∗(t) ≡ i∗, where the index
of the best channel is denoted by i∗ ≜ argmaxi∈[K] µi.1 To
evaluate the performance of a scheduling policy π, we compare
the expected queue length using policy π with the expected
queue length using the optimum policy π∗. By definition, the
cumulative queue length regret applying scheduling policy π
at slot T is denoted by Rπ(T ), which can be computed by:

Rπ(T ) ≜ E

[
T−1∑
t=0

Qπ(t)−
T−1∑
t=0

Q∗(t)

]
. (3)

III. LEARNING ALGORITHM DESIGN

The above channel selection problem in the absence of
channel statistics {µi}Ji=1 can be cast into the multi-arm bandit
framework, where each channel i ∈ [K] can be viewed as an
arm and the queue length Q(t) is the cost in slot t. An efficient
bandit algorithm achieves a trade-off between exploration and
exploitation. Unlike a traditional sequential decision making
problem where a reward/cost is received in every slot, in our
problem, when Q(t) = 0, no cost is incurred. Therefore,
using full exploration (i.e., do not choose the channel with
the highest empirical success rate) when Q(t) = 0 does not
increase the total cost. Our algorithm improves the queue
length performance by doing full exploration for slots with
Q(t) = 0 (the so called “idle period”) and improves the
explore-exploit trade-off for slots with Q(t) > 0 (referred as
”busy period”) using the Information Directed sampling (IDS)
[9]. The detailed algorithm design is as follows:

A. Queue State Classification

a) Idle Period (Complete Exploration): In the idle period
Q(t) = 0, we perform channel exploration by selecting a
channel i ∈ [K] uniformly and randomly. Let si(t) and fi(t) be
the total successful and failed transmission times of arm i up to
slot t. We then update si(t) and fi(t) based on the transmission
feedback X(t) in slot t, i.e., si(t) = si(t − 1) + Xi(t),
fi(t) = fi(t − 1) + 1 − Xi(t). Then the experimental mean
reward of each channel is µ̂i(t) = si(t)

si(t)+fi(t)
. The decision

of choosing which channel in the idle period doesn’t effect
the queue’s backlog, hence the cumulative queue regret is not
growing.

b) Busy Period (Improving Explore-Exploit Trade-off us-
ing IDS): Recall that Q(t) is the length of the queue in slot
t and Q(t) > 0 means the queue is non-empty. Let τd be the
d-th starting time when the queue leaves the empty state, i.e.,
τ1 := mint{Q(t) > 0} and τd := mint>τd−1

{Q(t) > 0}. The

1For simplicity, assume there is only one best channel with the highest
transmission success probability.
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channel selection algorithm during each busy period d can be
divided into two parts:

• If the busy period has lasted less than qd slots, we do
full exploitation by choosing channel with the highest
empirical success rate, i.e., i(t) := argmax

i∈[K]

si(t)
si(t)+fi(t)

.

• If the busy period lasts for more than qd slots, we
achieve the explore-exploit trade-off using IDS. Then the
information gain gt(i) of choosing arm i can be computed
by:

gt(i) := E[H(i∗|Ft−1)−H(i∗|Ft−1, i(t) = i)], (4)

where H(i∗|Ft) is the conditional entropy of random
variable αt. The posterior distribution of µi given si(t)
and fi(t) follows a Beta distribution, i.e. Pr(µi = θi) =
Beta(θi; si(t), fi(t)). The expected reward of the best
channel given past observations is denoted by ρ∗(t) :=
E[maxi µi|Ft] . Let ∆i(t) := ρ∗(t)− µ̂i be the difference
between θ∗(t) and the empirical mean of arm i. Define
the information ratio as ∆i(t)

2

gi(t)
. The schedule policy in the

(d + 1)-th slot in busy period d after slot τd + qd is to
select channel i with probability pi(t), where pi(t) can be
computed by:

pi(t) = min
p∈CK

(p⊤∆⃗(t))2

p⊤g⃗(t)
. (5)

Denote CK = {p ∈ RK
+ :

∑
i pi = 1} as the K-dimensional

unit simplex. Computations of ∆i(t) and gi(t) can be found in
Algorithm 2, and the detailed derivations are provided in the
appendix.

B. Algorithm Design

The overall algorithm contains two parts: exploration in idle
period and exploitation in busy period. The algorithm flow
chart is shown in Algorithm 1. At first, the algorithm sets empty
record of transmission feedback and empty queue backlog, the
index of busy period is 0. As the system knows the number
of arrival packets and served packets, the queue length at each
slot can be calculated, then the schedule policy will operate
depending on whether the queue is empty or not.

• For idle period: The schedule policy is uniformly and
randomly selecting channels at each slot in order to
update each arm’s empirical mean reward. Since the queue
backlog is empty, the transmission result won’t affect
queue length at the next slot.

• For busy period: The index of busy period d grows when
comes to a busy period. Let l be the l-th slot in this
busy period. If l ≤ qd, the schedule policy is selecting
the channel with the highest experimental mean reward.
Otherwise the scheduler selects channel i with probability
pi computed by (5).

In order to intuitively show the evolution of queue length
under the channel scheduling policy designed by UE-IDS, an
example of queue evolution is shown in Fig. 2.

In Fig. 2, the initial queue length was Q(0) = 0. At
t = 1, the system entered the first busy period (d = 1), the

Algorithm 1 Uniformly Exploration and Information Directed
Stabilizing Algorithm
Initialization: For each channel i, set si(t), fi(t), Q(t), d ←
0.

for t = 1, 2, · · ·T do
Get Q(t) by equation (1).
if Q(t) = 0 then
{idle period}
Select channel i ∈ K uniformly and randomly.
Get feedback Xi(t), si(t)← si(t−1)+Xi(t), fi(t)←
fi(t− 1) + 1−Xi(t).

else
{busy period}
if Q(t− 1) = 0 then
d← d+ 1, l← 0

end if
l← l + 1
if l ≤ qd then

Select channel i = argmax
i∈[K]

si(t)
si(t)+fi(t)

.

else
Calculate ∆i(t) and gi(t) by algorithm 2. Compute
pi(t) by (5) and select channel i with probability pi.

end if
Get feedback Xi(t), si(t)← si(t−1)+Xi(t), fi(t)←
fi(t− 1) + 1−Xi(t).

end if
end for

Algorithm 2 Information Ratio Calculation(si(t), fi(t),K)

hi(x)← Betapdf(x, si(t), fi(t))
Hi(x)← Betacdf(x, si(t), fi(t))
H(x)←

∏
i Hi(x)

Gi(x)←
∫ x

0
yhi(y)dy

Pr(i∗ = i)←
∫ 1

0
hi(x)
Hi(x)

H(x)dx

Mi|i ← 1
Pr(i∗=i)

∫ 1

0
xhi(x)
Hi(x)

H(x)dx

Mi|i′ ← 1
Pr(i∗=i′)

∫ 1

0
hi′ (x)H(x)
Hi′ (x)Hi(x)

Gi(x)dx, i′ ̸= i

ρ∗ ←
∑

i Pr(i∗ = i)Mi|i
∆i(t)← ρ∗ − si(t)

si(t)+fi(t)

gi(t) ←
∑

i′ Pr(i∗ = i′)(Mi|i′ log(Mi|i′
si(t)+fi(t)

si(t)
)+(1 −

Mi|i′) log((1−Mi|i′)
si(t)+fi(t)

fi(t)
)

return ∆i(t), gi(t).

channel with highest experimental mean reward was chosen.
The following two slots scheduled channels based on IDS and
the queue finally became empty at t = 4. The second idle
period lasted for two slots (t = 4 ∼ 5) and the second busy
period lasted for seven slots (t = 6 ∼ 12). In the third busy
period, the queue was cleared within qd slots, exploitation-only
is enough to stabilize the system.
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Fig. 2. An Example of Queue Evolution using UE-IDS

IV. SIMULATION RESULTS

In this section, we provide some numerical simulations
to validate the performance of the proposed algorithm. We
consider a transmitter-receiver pair with K = 4 channels, the
set of corresponding transmission success probabilities (service
rates) is µ⃗ = [0.3, 0.5, 0.7, 0.9]. The algorithm is ran for
T = 3000 consecutive slots. In Algorithm 2, hi(x) and Hi(x)
are continuous functions, it’s hard to store continuous functions
or compute the integrals of them. Therefore we compute the
integral part for value hi(x), Hi(x), H(x) and Gi(x) through
the Newton-Leibniz algorithm by dividing interval [0, x] into
τ = 2000 intervals with uniform length.

We compare our algorithm with three other algorithms
for solving the channel selection problem: (1). the classical
stochastic bandit algorithm UCB1 [10] that chooses i(t) :=

argmax
i∈[K]

( si(t)
si(t)+fi(t)

+
√

2 ln t
si(t)+fi(t)

) for each slot t, t ≥ K;

(2) the busy UCB1 algorithm that only runs UCB1 algorithm
during busy periods, and does not send packets to test the chan-
nel during idle periods; (3) the UCB-UE algorithm proposed
in [8] that balance explore-exploit trade-off when the queue
length exceeds a certain threshold.

Fig. 3 examines the expected cumulative queue length regret
of different algorithms. In this scenario, the arrival rate is set
to λ = 0.7 and each plot shows the queue length regret over
1000 runs. It can be seen that our designed algorithm has much
lower queue length regret than other algorithms, thanks to the
fully explorations in idle periods and the properly use of IDS.
Moreover, as time T goes up after T = 1000, the cumulative
queue length grows at negligible speed, which validates that
the proposed UE-IDS algorithm achieves a cumulative queue
length regret of O(1) cumulative queue length regret.

In Fig. 4, we set the arrival rate as λ = 0.95, and the set of
service rates is µ⃗ = [0.3, 0.5, 0.7, 0.8], in such case, the arrival
rate is larger than any of K service rates. The queue length
regret is averaged over 100 simulation runs. The simulation
result shows that the queue length regret of all algorithms
keeps increasing, but our proposed UE-IDS has a much slower
growing speed compared to three other algorithms. UE-IDS
achieves smaller regret because it obtains a better explore-
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Fig. 3. Average Expected Queue Length Regret Comparisons of
Different Algorithms over 1000 Trials with λ = 0.7

exploit trade-off when busy periods appear frequently under
overloaded circumstance.
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Fig. 4. Average Expected Queue Length Regret Comparisons of
Different Algorithms over 100 Trials with λ = 0.95

V. CONCLUSIONS

In this paper, we study the online channel selection problem
for a point-to-point communication link. To minimize the
transmission delay in the absence of channel statistics, we
propose an online channel selection algorithm that performs
uniformly exploration during the idle periods, and achieve
the explore-exploit trade-off using IDS during busy periods.
Simulations show that our algorithm can achieve an optimal
order O(1) regret when the packet arrival rate is within the
stability region of the system. Future work includes extending
the proposed method to block fading or fast fading channel
conditions and completing theoretic analysis.

APPENDIX A
DETAILS OF ALGORITHM 1

In this appendix, we will introduce the computation proce-
dures of the information gain, which requires the computation
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of ∆i(t) and gi(t). Recall that the posterior distribution of
µi follows Beta distribution θi, we will use the posterior
distribution to compute the probability of one channel having
the highest reward and the conditional expected reward given
the optimal channel, based on which ∆i(t) and gi(t) can be
computed.

First let hi(x) := Pr(θi = x|Ft−1) be the probability density
function, x ∈ [0, 1], then the cumulative density function is
denoted by Hi(x) :=

∫ x

0
hi(t)dt = Pr(θi ≤ x), which equals

the probability that the mean reward of channel i is not more
than x.

Let H(x) := Pr(θi ≤ x,∀i ∈ [K]) =
∏

i Hi(x) be the prob-
ability that the expected reward of all actions is not greater than
x. The expectation of channel i has a mean reward not greater
than x is denoted by Gi(x) := E[θi ≤ x] =

∫ x

0
yhi(y)dy.

We can then compute the probability that channel i has the
largest mean reward:

Pr(i∗ = i) = Pr(θi = max
j

θj)

=

∫ 1

0

Pr(θi = x)Pr(θi′ ≤ x,∀i′ ̸= i)dx

=

∫ 1

0

hi(x)

Hi(x)
H(x)dx.

(6)

Let the expected mean reward of i given that i is the optimal
choice be Mi|i, which can be computed by:

Mi|i := E[θi|i∗ = i]

=

∫ 1

0

x
Pr(θi = x)Pr(θi′ ≤ x)

Pr(i∗ = i)
dx

=
1

Pr(i∗ = i)

∫ 1

0

xhi(x)

Hi(x)
H(x)dx. (7)

Similarly, denote the expected mean reward of i given that
i′ is the optimal choice by Mi|i′ , which can be computed by:

Mi|i′ := E[θi|i∗ = i′]

=

∫ 1

0

∫ x

0

yPr(θi = y)Pr(θi′ = x)Pr(θj ≤ x,∀j ̸= i, i′)

Pr(i∗ = i′)
dydx

=
1

Pr(i∗ = i′)

∫ 1

0

hi′(x)H(x)

Hi′(x)Hi(x)
Gi(x)dx, i′ ̸= i. (8)

Denote the expected mean reward of the optimal arm by ρ∗,
which can be computed by:

ρ∗ := E[max
i

θi]

=
∑
i

Pr(i∗ = i)E[θi|i∗ = i]

=
∑
i

Pr(i∗ = i)Mi|i. (9)

As mentioned, ∆i(t) measures the one-step difference be-
tween expected mean reward of the optimal arm and the exper-
imental mean reward of the scheduled arm. The computation
of ∆i(t) is as follows:

∆i(t) := E[Xi∗(t)−Xi(t)|Ft−1]

= ρ∗ − µ̂i

= ρ∗ − si(t)

si(t) + fi(t)
. (10)

The information gain denoted by gi(t) is the mutual informa-
tion between the optimal arm and the transmission outcome. In
our system, to obtain gi(t), we need to calculate the expected
Kullback-Leibler divergence of two Bernoulli distributions
with parameter Mi|i′ and µ̂i as follows:

gi(t) := I(i∗;Xi(t))

=
∑

i′∈[K]

Pr(i∗ = i′)DKL(Pr(Xi(t)|i∗ = i′)||Pr(Xi(t)))

=
∑
i′

Pr(i∗ = i′)(Mi|i′ log(Mi|i′
si(t) + fi(t)

si(t)
)

+ (1−Mi|i′) log((1−Mi|i′)
si(t) + fi(t)

fi(t)
). (11)

Information gain measures the distance between the reward
distributions with or without the knowledge of optimal arm.
After computing all equations above, we can further compute
the information ratio by equation (5).
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