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Abstract—In this work, we study a system with a sensor
forwarding status update to the receiver through an error-
prone channel, and the receiver sends the transmission results
to the sensor via a reliable link. We assume both transmission
links suffer from random delays. We use Age of Information
(AoI) to measure the freshness of the status information at the
receiver. Our goal is to design a sampling policy that minimizes
the expected time average AoI when the channel statistics are
unknown. The problem is reformulated into a renewal-reward
process optimization, and an online algorithm based on the
Robbins-Monro algorithm is proposed. We prove that when the
forward and backward transmission delays are bounded, the AoI
difference between the online algorithm and the optimal policy
decays with rate O(lnK/K), where K is the number of successful
transmissions. Simulation results validate the performance of our
proposed algorithm.

Index Terms—Age-of-Information, Online learning, Renewal-
Reward Process, Unreliable Transmissions

I. INTRODUCTION

With the widespread application of real-time control sys-
tems, such as autonomous driving and intelligent production,
timely status update is becoming increasingly important to
support the demand for monitoring real-time status [1]. To
measure the freshness of the status update, Age of Information
(AoI) has been proposed [2]. AoI is the time difference be-
tween the current time and the generation time of the freshest
packet [2]. Maintaining a smaller AoI ensures more timely
status updates from the remote source and thus improves the
performance of the monitoring system.

Sampling for AoI minimization has received a lot of atten-
tion from researchers [3]–[12]. When the transmission statis-
tics, such as delay distributions, and packet-loss probabilities
are known in advance, the minimization of average AoI can
be formulated into a Markov decision process (MDP). To
reduce the age, we may require the sensor to wait before
taking a new sample, i.e., the zero-wait policy may not be
the optimum [10]. Optimal sampling policies for the status
update system with one-way delay, i.e., there is no feedback
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delay, and with two-way delay, i.e., both forward and feedback
delays may be nonzero, are studied in [12], [13], respectively.
These optimal policies exhibit a similar threshold structure
where the threshold depends on the optimal objective value
and the constraint of sampling rate. The previous works
assume reliable transmissions. However, because of fading and
interference in the real environment, the channel is unreliable
and the packet will encounter transmission failures. In [8],
unreliable transmission is considered and an optimal sampling
policy is derived. For unreliable channels, the sensor only
waits if the last transmission is successful, otherwise, it will
take a new sample immediately.

When the channel statistics are unknown, designing age-
optimal sampling policies can be formulated as a sequential
decision problem. One way to solve this problem is online
learning, which has low complexity and easy analysis. On-
line learning has been used to design sampling strategies in
reliable channels. Tang et al. used Robbins-Monro to obtain
the age-optimal sampling policy adaptively and performed
a performance analysis for a one-way delay model [14],
[15]. Furthermore, a similar online algorithm is derived to
minimize the MSE when sampling for a wiener process in
[16]. In [17], the authors proposed an online algorithm for
sampling in a system with two-way delay but without a
sampling rate constraint. However, unreliable transmission is
not considered in the literature above. In [18], [19], the authors
studied optimal sampling policy for unreliable channels with
unknown channel statistics. Nonetheless, theoretical analysis
such as the convergence rate for the optimality gap, i.e., the
cumulative AoI difference between the proposed algorithm and
the optimal policy is not provided in [17]–[19].

To address the previously mentioned challenges, in this pa-
per, we aim to minimize AoI with unknown channel statistics,
under one of the most general channel settings in the literature:
unreliable transmissions with random two-way delay. Note
that the above channel settings are similar to that of [8],
but without access to channel statistics. Our objective is to
minimize the expected time-averaged AoI under a frequency
constraint. Then, based on Robbins-Monro algorithm, we
propose an online algorithm to adaptively learn the optimal
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sampling policy without channel statistics. Additionally, we
provide a theoretical analysis of the convergence rate when
there is no frequency constraint. We show that the gap between
the expected cumulative AoI of the online algorithm and the
AoI of the optimal policy decays with rate O( lnK

K ). Finally,
simulations are conducted to validate the performance of our
proposed online algorithm.

II. PROBLEM FORMULATION

A. System Model

We consider a system as Fig. 1 shows. The system com-
prises a sensor, a receiver, a forward sensor-to-receiver chan-
nel, and a backward receiver-to-sensor channel. The sensor
takes a sample of the latest system state and submits the
fresh sample to the channel. Due to fading and interference
that exists in the real environment, we assume the forward
transmission is unreliable with a random delay. After the
transmission is complete, the receiver immediately sends 1-
bit feedback through the reliable backward channel to indi-
cate whether the transmission was successful (ACK) or not
(NACK). We assume that the backward transmission time is
random.

Forward Channel 
Unreliable Receiver

Backward Channel 
Reliable

Sensor

��,�

��,�

��,�

Backward Delay ��,�
�

Forward Delay ��,�
�

System State

Waiting Time ��,�

Fig. 1. System Model

Due to possible transmission failures, we may need several
attempts to successfully transmit a sample. Therefore, to
describe easily, we introduce the notion of epoch. Denote
i ∈ {1, 2, · · · } as the number of successfully transmitted
packets. Then, the i-th epoch represents the time interval
between the sampling time of the i-th successful transmission
and the sampling time of the (i+1)-th successful transmission.
We assume that the forward transmission experiences i.i.d.
transmission failures with a probability of α. Therefore, the
total number of transmissions attempts in the i-th epoch, de-
noted by Mi, follows a geometric distribution with parameter
1 − α. We use j to denote the number of attempted samples
in the i-th epoch, where we have 1 ≤ j ≤ Mi. Specifically,
when j = 1, the previous sample is successfully delivered to
the receiver. Throughout the paper, we will denote the tuple
(i, j) as the index of j-th sampled packet in the i-th epoch.

At the i-th epoch, the sensor takes the j-th sample at time
Si,j , then the sample experiences a random delay of DF

i,j

in the forward channel before arriving at the receiver. The
reception time is denoted as Ri,j . At Ri,j , the receiver sends
immediate feedback that undergoes a backward random delay
DB

i,j and arrives at the sensor at time Ai,j . The sensor waits
for a time period Wi,j before taking the next sample. The
waiting time Wi,j is decided by our policy, and we assume

that Wi,j is bounded. We assume that the forward delay and
the backward delay are mutually independent and follow their
independent and identically distributed probabilities PFD and
PBD, respectively. We provide a further technical assumption
on PFD and PBD:

Assumption 1: The probability measure PFD and PBD are
both absolutely continuous on [0,∞). Their expectations are
upper bounded by DF

ub and DB
ub, respectively, and are

lower bounded by DF
lb and DB

lb, respectively. Their second
moments HF ≜ EPBD [(D

F )2] and HB ≜ EPBD [(D
B)2] are

upper bounded by HF
ub and HB

ub, respectively, and lower
bounded by HF

lb and HB
lb, respectively.

B. Age of Information
We measure how fresh the data is at the receiver using

the metric Age of Information (AoI). By definition [20], AoI
equals the time difference between the current time and the
generation time of the freshest sample. Let Zt = maxi{Si,1 :
Ri,1 ≤ t}. Note that only the first package in an epoch is
successfully delivered. Then, the AoI A(t) of the current time
t is defined as

A(t) ≜ t− Zt. (1)

A sample path of AoI evolution is depicted in Fig. 2. After
a successful delivery, the AoI decreases to the transmission
delay DF

i+1,1 of the first sample at the (i + 1)-th epoch.
Otherwise, the AoI grows linearly.
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Fig. 2. AoI Evolution

C. Problem Formulation
Our objective is to design a sampling policy π ≜ {Wi,j},

to minimize the average AoI under a sampling frequency
constraint when the delay distributions PFD and PBD and the
packet loss probability α are unknown. We only consider the
causal policies Π in which the waiting time is selected based
on the history information.

Problem 1:

AoIopt = inf
π∈Π

lim sup
T→∞

1

T
E

[∫ T

0

A(t)dt

]
,

s.t. lim sup
T→∞

1

T
E[C(T )] ≤ fmax.

(2)

Here, C(T ) is the total number of samples taken in [0, T ].
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III. SOLUTION TO THE PROBLEM

In this section, we first reformulate the problem into a
renewal-reward process optimization. Then, we will review
the optimal sampling policy π⋆ when the delay distribution
PFD and PBD are known. Based on the optimal offline policy,
when PFD and PBD are unknown, we will propose an online
algorithm that adaptively learns the waiting policy π⋆.

A. A Renewal-Reward Process Reformulation

A policy π ∈ Π is stationary and deterministic if the
waiting time Wi,j is a deterministic mapping from the previous
transmission delay information. Let ΠSD ⊆ Π be the set of
stationary deterministic policies.

Denote the cumulative AoI in the i-th epoch as Fi ≜∫ Si+1,1

Si,1
A(t)dt and the epoch length as Li ≜ Si+1,1 − Si,1.

Because the policy π is stationary, and the delays are i.i.d,
Fi and Li are both i.i.d variables and follow a regenerative
process. By renewal theory, similar to [8, Section V.A], we
can reformulate Problem 1 as follows

Problem 2:

AoIopt = inf
π∈Π

lim
n→∞

∑n
i=1 E [Fi]∑n
i=1 E [Li]

, (3a)

s.t. lim
n→∞

1

n

n∑
i=1

E [Li] ≥
∑n

i=1 E [Mi]

fmax
. (3b)

Notice that Fi is non-decreasing in Wi,j . Since Wi,j is
bounded, i.e., Wi,j ∈ [0,Wub], we assume

E[Fi|Wi,j = Wub] < ∞, (4)

which implies E[Fi] < ∞ for all Wi,j ∈ [0,Wub].
Since A(t) : [0,∞) 7→ [0,∞) is non-decreasing and if (4)

is satisfied, we have the following theorem.
Theorem 1: [12, Theorem 2, Restated] There exists a

stationary and deterministic policy π⋆ ∈ ΠSD that is optimal
to Problem 2.

Then, we search for π⋆ in the policy space ΠSD without
losing optimality. The following corollary reveals the structure
of the AoI minimum sampling policy, which further reduce our
search space [8].

Corollary 1: Problem 2 can be represented by a function
w : R2 → R, where the waiting time Wi,j is selected by:

Wi,1 = w(DF
i,1, D

B
i,1),

Wi,j = 0 j = 2, 3, · · · .
(5)

Then, the expected time-average AoI of each policy that
satisfies corollary 1 with waiting time selection function w
can be computed by:

Problem 3 (Renewal-Reward Process Optimization Refor-
mulation):

AoIopt = inf
π∈ΠSD

E[DF ] +
E
[(
DB +DF + w +D′)2]

2E [DB +DF + w +D′]

 ,

(6a)

s.t. E
[
DB +DF + w +D′] ≥ E [M ]

fmax
, (6b)

where DF ∼ PFD, DB ∼ PBD, and D′ =
∑Mi

j=2(D
F
j +

DB
j ), DF

j
i.i.d∼ PFD, D

B
j

i.i.d∼ PBD is the equivalent transmission
delay after the first sample. And w is the abbreviation of
w(DF , DF ). The detailed derivation is in Appendix B of [21].

Define Qk := 1
2 (D

F
k,1 + DB

k,1 + Wk + D′
k)

2 and Lk :=

DF
k,1+DB

k,1+Wk +D′
k. Qk can be seen as the reward in the

k-th epoch and Lk is the length of the k-th epoch. Because
the delays DF and DB are independent of each other, Qk and
Lk are also i.i.d variables. Then, the problem can be seen as
a renewal-reward process optimization.

B. Offline optimal policy with known channel statistics

To satisfy the frequency constraint, we will focus on search-
ing in the set Πcons.

Πcons =

{
π ∈ ΠSD | E

[
DB +DF + w +D′] ≥ E [M ]

fmax

}
.

(7)
Notice that each stationary deterministic policy π can be

represented by a function w, then finding the optimal policy
π⋆ is equivalent to finding the optimal function w⋆. Because
w⋆ achieves AoIopt, the AoI under any other policy w is larger
than AoIopt. Denote Aw as the average AoI under policy w,
we have the following inequality

Aw = E[DF ] +
E
[(
DB +DF + w +D′)2]

2E [DB +DF + w +D′]
≥ AoIopt. (8)

For simplicity, let β⋆ = AoIopt − E[DF ]. Deducting
E[DF ] on both sides of inequality (8), and multiplying
E
[
DB +DF + w +D′] on both side, we have

1

2
E
[(
DB +DF + w +D′)2]

− β⋆E
[
DB +DF + w +D′] ≥ 0, ∀w ∈ Πcons.

(9)

Notice that (9) takes equality if and only if policy w
achieves AoI minimum. Therefore, when β⋆ is known, we
can obtain the optimum policy w⋆ by solving the following
functional optimization problem:

θopt ≜ min
w∈Πcons

1

2
E
[(
DB +DF + w +D′)2]

− β⋆E
[
DB +DF + w +D′] , (10a)

s.t. E
[
DB +DF + w +D′] ≥ E[M ]

fmax
. (10b)

Inequality (9) shows by using the optimum policy, θopt = 0.
To obtain the policy that achieves θopt = 0, we can place the
sampling frequency constraint (10b) into the objective function
(10a) using a dual optimizer ν ≥ 0. Define γ ≜ β − E[D′].
The Lagrange function is as follows

L(γ, ν, w) :=1

2
E
[(
DB +DF + w +D′)2]
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− (γ + ν)E
[
DB +DF + w +D′]

− E[D′]E
[
DB +DF + w +D′]+ ν

E[M ]

fmax
.

(11)

Proposition 1: The optimum policy w⋆
γ,ν that minimizes the

Lagrange function (11) as follows

w⋆
γ,ν(D

F
1 , D

B
1 ) =

(
γ + ν − (DB

1 +DF
1 )
)+

. (12)

The proof for Proposition 1 is in Appendix C of [21].
Let ν⋆ := argsup

ν≥0
infw∈Πcons L (γ⋆, ν, w) be the dual op-

timizer that resolves the Lagrange function when γ = γ⋆.
Define function g as follows

g(γ, ν,DF , DB , D′
1, D

′
2)

=
1

2

(
DF +DB + (γ + ν −DF −DB)+ +D′

1

)2
− γ(DF +DB + (γ + ν −DF −DB)+ +D′

1)

−D′
2(D

F +DB + (γ + ν −DF −DB)+ +D′
1). (13)

D′
1 and D′

2 have the same distribution as D′. And for
simplicity, we denote the expectation of function g as

g(γ, ν) = EDF ,DB ,D′
1,D

′
2
[g(γ, ν,DF , DB , D′

1, D
′
2)].

Then we have the necessary condition on γ⋆:

g(γ⋆, ν⋆) = θopt = 0. (14)

The function g(γ) ≜ g(γ, 0) is monotonic decreasing and
concave. The proof is in Appendix D of [21]. Because of the
monotonic decreasing and concave property, when the delay
distributions PFD and PBD are known, we can search for the
optimum (γ⋆ + ν⋆) using the bisection method [12].

Furthermore, denote Dub = DF
ub+DB

ub+D′
ub and Hub =

(DF +DB +D′)2ub, we can bound γ⋆ as follows. The proof
is in Appendix E of [21].

Lemma 1: The optimum γ⋆ can be bounded by γlb ≤ γ ≤
γub, where

γlb := max{1
2
(DF

lb +DB
lb −D′

ub), 0},

γub :=

1
2Hub +Dub

1
fmax

+ 1
f2

max

Dub +
1

fmax

−D′
lb.

C. Online policy with unknown channel statistics

When the channel statistics, such as delay distributions and
the packet loss probability are unknown, we can approximate
γ⋆ that resolves (14) using stochastic approximation. Because
(14) takes expectation with respect to two D′ with the same
distribution, we use the sample of D′ in the last epoch and the
current epoch to update γ and ν. We will use k, j to denote
the index of epoch and attempted samples in the k-th epoch,
respectively, where k ∈ {1, 2, · · · }, j ∈ {1, 2, · · · ,Mk}.

To guarantee the sampling frequency constraint, we use
νk = 1

V Uk as the dual optimizer in epoch k, where V > 0

is a fixed constant. Then, by assuming that ν⋆ = νk, we
can approximate γ⋆ in epoch k using the Robbins-Monro
algorithm.

We start by initializing γ0 ∈ Uni([γlb, γub]) and U0 = 0. In
each epoch k, the sampling and updating rules are as follows.

1) Update γk: After the k-th ACK of is received, we update
the γk and νk. To search for the root γ of the equation
(14), we update γk using the Robbins-Monro algorithm.
Denote

Bk−1 = g(γk−1, νk−1, D
F
k−1,1, D

B
k−1,1, D

′
k−1, D

′
k−2)

(15)
as the i.i.d sample of (14). We first compute Bk−1 as
(13).
The Robbins-Monro algorithm operates by

γk = [γk−1 + ηk−1Bk−1]
γub
γlb

, (16)

where [γ]ba = min{b,max{γ, a}} and {ηk} is a set of
sequence that guarantees the convergence. It is selected
to be:

ηk =

{
1

2Dlb
, k = 1;
1

(k+2)Dlb
, k ≥ 2,

(17)

where Dlb = DF
lb +DB

lb +D′
lb.

2) Update Uk: To guarantee that the sampling frequency
constraint is not violated, we update the violation Uk at
the end of each epoch.

Uk =

(
Uk−1 +

[
Mk−1

fmax

− (DB
k−1,1 +DF

k−1,1 +Wk−1,1 +D′
k−1)

])+

,

(18)

where Mk−1 is the number of attempted samples in the
(k − 1)-th epoch.

3) Sampling: After the k-th ACK of is received and the
update of γk and νk, we select the waiting time Wk,1

by
Wk,1 = (γk + νk − (DF

k,1 +DB
k,1))

+. (19)

Then, after each NACK is received, the waiting time is
selected as zero, i.e.,

Wk,j = 0 j = 2, 3, · · · . (20)

In each epoch, we record the delay information,
the times of transmission, and the waiting time
DF

k,1, D
B
k,1, D

′
k,Wk,1.

The algorithm is summarized in Algorithm. 1.

D. Theoretical Analysis

Because the AoI evolution of the proposed online algorithm
is a function of t, it is hard to analyze in general. As an
alternative, we use the ratio

ÃK :=
E
[∫ SK+1

t=0
A(t)dt

]
E[SK+1]

=
E[
∑K

k=1 Fk]

E[
∑K

k=1 Lk]
, (21)
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Algorithm 1: Proposed Online Algorithm
Input: Frequency Constraint fmax, Time T ,

hyper-parameter V .
Output: Time-Averaged AoI

1 Initialize γ ∈ Uni[γlb, γub], k = 1, U = 0
2 while t ≤ T do
3 Sample and Choose waiting time as (19) and (20)
4 Record the waiting time and delay information
5 if Receive the k-th ACK then
6 Update t:

t = t+DF
k−1,1 +DB

k−1,1 +Wk−1,1 +D′
k−1

7 Compute the AoI accumulation in this epoch
8 Compute Bk−1 as (15)
9 Update γk: γk = (γk−1 + ηk−1Bk−1)

γub
γlb

10 Update Uk as (18)
11 Set νk = 1

V Uk

12 k = k + 1

13 Compute the time-averaged AoI accumulation.

which is the average AoI up to the (K + 1)-th epoch of the
online algorithm.

Denote wK = (γK+ 1
V UK−DF

1 −DB
1 )+ as the policy used

in the K-th epoch. For simplicity, we use AwK
to represent the

expected time-averaged AoI under policy wK . We can measure
the performance of the time-averaged accumulation of AoI:
ÃK − AoIopt and the time-averaged AoI under policies wK

and optimal policy: AwK
−AoIopt. When there is no frequency

constraint, the main result is as follows.
Theorem 2: If the upper bound of the transmission delay

DF , DB and the maximum transmission times in an epoch
are known, i.e., DF < DF

ub < ∞, DB < DB
ub < ∞,M <

Mub ≤ ∞, the approximation error of γ⋆ up to epoch K can
be bounded by:

E[(γK − γ⋆)
2
] ≤ 2

K

L4
ub

D
2

lb

= O(
1

K
), (22a)

where Dlb = DF
lb+DB

lb+D′
lb, Lub = γub+Mub(D

F
ub+DB

ub).

Also, the difference between the expected time-averaged
cumulative AoI up to epoch K, i.e., ÃK and the expected
time-averaged AoI under the optimal policy w⋆, i.e., Aw⋆ can
be upper bounded by

ÃK −Aw⋆ ≤ 2.
L4

ub

DD
2

lb

× 1 + lnK

K
= O(

lnK

K
). (22b)

Furthermore, the difference of expected time-average AoI
under policy wK and the optimal policy w⋆ can be upper
bounded by

AwK
−Aw⋆ ≤ 2

K
× L4

ub

DD
2

lb

= O(
1

K
). (22c)

The proof of Theorem 2 is in Appendix F of [21].

IV. SIMULATIONS

In this section, we provide simulation results to validate the
performance of our algorithm. We consider that the forward
and backward transmission delay follow the log-normal dis-
tribution parameterized by µ and σ, i.e., the density function
is

p(x) :=
PD(dx)

dx
=

1

σ
√
2π

exp

(
− (lnx− µ)2

2σ2

)
. (23)

The probability of transmission failure is set to be α = 0.1.
Since the zero-wait policy may not satisfy the sampling fre-

quency constraint, we compare the proposed online algorithm
with the following two policies:

1) A constant wait policy wconst that selects the waiting
time by Wi,1 = max{ M

fmax
−DF −DB −D′, 0}.

2) The optimum policy

w⋆
γ,ν(D

B
1 , DF

1 ) =
(
γ⋆ + ν⋆ − (DB

1 +DF
1 )
)+

.

The γ⋆ + ν⋆ is computed by [8].
Fig. 3 studies the asymptotic average AoI performance

as a function of time using different policies when there is
frequency constraint, i.e., fmax = 1

10(DF+DB)
. The parameters

of the delays are set to be µ = 1 and σ = 1.4. The confidence
interval of the average AoI of the proposed online algorithm
is also plotted. From Fig. 3, it can be seen that the constant
waiting policy has a larger AoI than the proposed online
algorithm, and this shows the superiority in obtaining data
freshness using the proposed online algorithm. In addition,
when time t goes to infinity, the average AoI of the online
algorithm converges to the minimum AoI.

Fig. 3. The expected time-average AoI evolution under log-normal(1,1.4)
with frequency constraint

Fig. 4 displays the evolution of γk as a function of epoch
number k. The confidence interval of γk in the 20 runs is also
plotted. From the figure, γk converges to the optimal γ⋆ as
the epoch k goes to infinity.

Fig. 5 evaluates the evolution of the average sampling
interval under different values of V . When the number of
epochs increases to infinity, the averaged sampling interval
keeps larger or equal to 1/fmax, which means the frequency
constraint is not violated. In addition, by using a larger V ,
the average AoI of the online algorithm converges faster to
the optimal average AoI, while by choosing a smaller V , the
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Fig. 4. The evolution of γk under log-normal(1,1.4)

sampling constraint can be satisfied in a shorter time, which
is similar to the queueing length-utility trade-off in network
utility maximization [22].
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Fig. 5. The evolution of averaged sampling-interval under log-normal(1,1.4)

V. CONCLUSION

In this paper, we studied a status update system with
a sensor sending status updates to a receiver through an
unreliable channel with delayed feedback. We aimed to min-
imize the average AoI at the receiver while meeting the
sampling frequency constraint of the sensor with unknown
channel statistics. The problem was first reformulated into
a renewal-reward process optimization and we proposed a
stochastic approximation algorithm that can learn the AoI
minimum sampling policy adaptively. Theoretical analysis and
simulation results validate the convergence and performance
of our algorithm.

REFERENCES

[1] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Guest Editorial Age of Information,” IEEE Journal on
Selected Areas in Communications, vol. 39, no. 5, pp. 1179–1182, 2021.

[2] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in 2012 Proceedings IEEE INFOCOM. Orlando, FL,
USA: IEEE, 2012, pp. 2731–2735.

[3] B. Wang, S. Feng, and J. Yang, “When to preempt? Age of information
minimization under link capacity constraint,” Journal of Communica-
tions and Networks, vol. 21, no. 3, pp. 220–232, 2019.

[4] B. Zhou and W. Saad, “Joint Status Sampling and Updating for Mini-
mizing Age of Information in the Internet of Things,” IEEE Transactions
on Communications, vol. 67, no. 11, pp. 7468–7482, 2019.

[5] H. Tang, J. Wang, L. Song, and J. Song, “Minimizing Age of Information
With Power Constraints: Multi-User Opportunistic Scheduling in Multi-
State Time-Varying Channels,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 5, pp. 854–868, 2020.

[6] M. A. Abd-Elmagid, H. S. Dhillon, and N. Pappas, “A Reinforce-
ment Learning Framework for Optimizing Age of Information in RF-
Powered Communication Systems,” IEEE Transactions on Communica-
tions, vol. 68, no. 8, pp. 4747–4760, 2020.

[7] E. T. Ceran, D. Gunduz, and A. Gyorgy, “A Reinforcement Learning
Approach to Age of Information in Multi-User Networks With HARQ,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp.
1412–1426, 2021.

[8] J. Pan, A. M. Bedewy, Y. Sun, and N. B. Shroff, “Optimal sampling for
data freshness: Unreliable transmissions with random two-way delay,”
IEEE/ACM Transactions on Networking, vol. 31, no. 1, pp. 408–420,
2023.

[9] A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Optimal
Sampling and Scheduling for Timely Status Updates in Multi-Source
Networks,” IEEE Transactions on Information Theory, vol. 67, no. 6,
pp. 4019–4034, 2021.

[10] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in 2015 IEEE International Symposium on Information Theory
(ISIT). Hong Kong, Hong Kong: IEEE, 2015, pp. 3008–3012.

[11] J. Pan, A. M. Bedewy, Y. Sun, and N. B. Shroff, “Age-optimal scheduling
over hybrid channels,” IEEE Transactions on Mobile Computing, pp. 1–
17, 2022.

[12] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or Wait: How to Keep Your Data Fresh,” IEEE Transactions
on Information Theory, vol. 63, no. 11, pp. 7492–7508, 2017.

[13] C.-H. Tsai and C.-C. Wang, “Age-of-Information Revisited: Two-way
Delay and Distribution-oblivious Online Algorithm,” in 2020 IEEE
International Symposium on Information Theory (ISIT), 2020, pp. 1782–
1787.

[14] H. Tang, Y. Chen, J. Wang, P. Yang, and L. Tassiulas, “Age Optimal
Sampling Under Unknown Delay Statistics,” IEEE Transactions on
Information Theory, vol. 69, no. 2, pp. 1295–1314, 2023.

[15] H. Tang, Y. Chen, J. Sun, J. Wang, and J. Song, “Sending Timely Status
Updates through Channel with Random Delay via Online Learning,” in
IEEE INFOCOM 2022 - IEEE Conference on Computer Communica-
tions. London, United Kingdom: IEEE, 2022, pp. 1819–1827.

[16] H. Tang, Y. Sun, and L. Tassiulas, “Sampling of the wiener process
for remote estimation over a channel with unknown delay statistics,” in
Proceedings of the Twenty-Third International Symposium on Theory,
Algorithmic Foundations, and Protocol Design for Mobile Networks and
Mobile Computing. Seoul Republic of Korea: ACM, 2022, pp. 51–60.

[17] C.-H. Tsai and C.-C. Wang, “Distribution-oblivious Online Algorithms
for Age-of-Information Penalty Minimization,” Department of Electrical
and Computer Engineering Technical Reports, 2022.

[18] E. T. Ceran, D. Gunduz, and A. Gyorgy, “Average age of information
with hybrid ARQ under a resource constraint,” in 2018 IEEE Wireless
Communications and Networking Conference (WCNC). Barcelona:
IEEE, 2018, pp. 1–6.
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