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Abstract—In this paper, we investigate the link rate selection
for point-to-point throughput maximization under unknown
channel statistics. The transmitter has limited policy switch times
due to the constrained deployment opportunities. In order to
maximize the expected system throughput, the wireless system
must identify the optimal link rate as soon as possible. To meet
this demand, we regard the time between two consecutive policy
switching slots as a batch, and formulate the problem into the
batched online sequential decision making framework. In partic-
ular, we propose two algorithms called the Modified/Constrained
Batched Thompson Sampling (MBTS/CBTS), and show the
expected regret is order-optimal with only logarithmic batches.
Simulation results are provided to validate that the proposed
algorithms can achieve a better regret and policy deployment
trade-off compared with current state-of-the-art methods, i.e.,
greatly reducing the policy switch times with little regret growth.

Index Terms—link rate selection, batched online learning,
Thompson Sampling

I. INTRODUCTION

Optimal link rate selection is one of the research hot
spots in the wireless communication systems including the
802.11 systems [1] and cognitive radio networks [2]. In these
scenarios, the system should identify the optimal rate among
a finite set to maximize the expected throughput. Traditional
link rate selection methods require reliable probing or channel
estimation [3]. However, in the highly mobile setting, precise
channel state information (CSI) feedback or even channel
statistics may be unavailable. To overcome this challenge,
online learning techniques, which only require historical ob-
servations for current decision making, can be used to guide
selection strategies with only ACK/NACK outcomes to iden-
tify the optimal rate [4], [5].

Multi-armed bandit (MAB) problem, as a popular online
sequential decision making problem, has been researched in-
depth in recent years [6], [7]. Directly applying the MAB
techniques to the link rate selection problem is widely studied
in previous works [1], [8], [9]. In [1], the authors propose
an Upper-Confidence-Bound (UCB) algorithm to achieve the
order-optimal logarithmic expected regret. Later, Thompson
Sampling (TS) algorithm [7] has also been modified to be
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applied to the rate selection problem in [8], [9]. In [8], the au-
thors show the TS-based selection method can outperform the
aforementioned UCB-based algorithm. Combining the prior
information of the link rate, [9] further designs a constrained
TS algorithm to improve the expected cumulative throughput
performance.

However, the above algorithms require policy deployment
in each time slot. This may be unpractical for many 802.11
devices with limited deployment opportunities or high pol-
icy switch cost. To overcome the challenge, batch learning
is incorporated into the standard online learning framework
to greatly reduce the deployment overhead. In the batched
scheme, the transmitter has more freedom for controlling the
policy deployment and only needs a subset of time slots for
data computation and strategy switch.

Recent progress in batched online learning [10]–[12] has
proven the achievability of the order-optimal logarithmic regret
bound. In [10], the authors prove that it is sufficient to deploy
O(log T ) batches to achieve the logarithmic regret over time
horizon T , and apply a UCB-based successive elimination
algorithm to achieve logarithmic regret. Similarly, batched TS
algorithm is later designed in [12], and is also shown to out-
perform the above UCB-based methods empirically. However,
these strategies require bounded [0,1] reward assumption and
do not consider the prior information among arms. Therefore,
new algorithms should be designed for this link rate selection
problem.

In this paper, we consider a point-to-point discrete-time
communication link, and aim to design a link rate selection
strategy to maximize the expected system throughput. Due to
the unknown channel statistics and limited policy switches, we
resort to the batched online learning framework and propose a
modified batched Thompson Sampling (MBTS) algorithm. We
prove the proposed method can achieve the logarithmic regret
bound with only logarithmic batch numbers. Moreover, with
the knowledge of the prior information about the link rate, we
propose a constrained batched Thompson Sampling (CBTS)
algorithm to improve the throughput performance. Finally,
simulation results are provided to validate the remarkable
performance of the proposed algorithms compared with the
current state-of-art methods.
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II. PROBLEM FORMULATION

We consider a point-to-point discrete-time wireless commu-
nication link where a transmitter can transmit data at N dif-
ferent potential transmission rates, denoted by r1, r2, · · · , rN .
Without loss of generality, we assume that 0 ≤ r1 < r2 <
· · · < rN . For each transmission rate ri, denote θi to be the
probability of successful transmission at rate ri. We assume
that θi remains constant throughout the time horizon T . Since
a successful transmission under a higher rate requires a better
channel condition, we assume that the successful transmission
probability θi is decreasing with respect to the rate index i,
i.e., θ1 ≥ θ2 ≥ · · · ≥ θN . Denote xi(t) ∈ {0, 1} to record
the data transmission outcome in slot t under rate ri, which
follows the Bernoulli distribution with parameter θi for all
t ∈ {1, 2, · · · , T}.

In order to maximize the expected system throughput in
each slot t, the transmitter should identify the optimal link
rate as soon as possible, i.e.,

i? = arg max
i∈[N ]

riθi, (1)

where [N ] denotes the set {1, 2, · · · , N} for convenience.
If the parameters θi are known accurately, the optimal link

rate can be easily obtained by enumeration. Unfortunately,
the probability θi is often unrevealed to the transmitter due
to the unknown channel condition. Therefore, the transmitter
must learn the parameters through historical observations and
decisions during the communication process. In this case,
the link rate selection problem can be formulated into the
stochastic MAB problem. Each link rate ri is the arm, and the
transmission throughput in each slot rixi(t) can be viewed as
the per-slot reward in the bandit problem. We use the expected
regret R(T ) to measure the performance of any policy π over
the time horizon T , which can be computed by

R(T ) = Eπ

[
T∑
t=1

(ri?θi? − ri(t)θi(t))

]
, (2)

where i(t) is the link rate selected in slot t under the policy
π and the expectation is taken over the randomization of the
policy π. Then, maximizing the expected system throughput
is equivalent to minimizing the regret R(T ). In particular, the
regret is expected to grow sub-linearly with time horizon T so
that the average throughput is asymptotic optimal. However,
the link rate selection problem has more prior information
compared to the standard bandit problem, which arises in
the dependence of the successful transmission probability, i.e.,
θi ≥ θj , ∀ri < rj . This has been explained in detail in [8].

If the transmitter can update the selection strategy at will
in each slot, recent progress in [8] and [9] proposes TS-based
online learning algorithms to identify the optimal link rate
through updating the posterior probability of θi. However, in a
typical communication scenario, the transmitter may have lim-
ited policy switch times due to the high deployment costs. This
motivates us to apply the batched online learning techniques
to solve the link rate selection problem. To be specific, the

transmitter can adaptively choose a number of time slots (much
less than T ) for strategy deployment and the transmission
process between two consecutive policy switching time slots
can be viewed as a batch. During a batch, the transmitter
selects the link rate under a fixed policy; at the end of the
batch, the transmitter can utilize the transmission decisions
and outcomes during the batch to update the current selection
strategy.

For the batched online learning problem, the transmitter
should not only identify the optimal link rate quickly but
also figure out the sweet point between a small number of
batches and fast convergence to the optimal link rate. In the
next section, we will propose several batched online learning
algorithms to achieve the same order-optimal O(N log T )
regret performance in the standard stochastic MAB problem
with just O(N log T ) batches.

III. BATCHED THOMPSON SAMPLING ALGORITHM

A. Algorithm Description
Batched Thompson Sampling (BTS) algorithm with adap-

tive batch selection has been proposed in [12] recently and
is shown to outperform other algorithms including the UCB-
based methods empirically. However, we cannot apply the BTS
algorithm with Beta priors in [12] directly to our problem.
This is because the reward distribution per slot rixi(t) in our
problem is not supported on interval [0, 1]. In particular, the
reward does not follow the Bernoulli distribution anymore. As
an alternative, we propose the modified batched Thompson
Sampling (MBTS) framework to design our link rate selection
strategy, summarized in Algorithm 1.

Algorithm 1 Modified Batched Thompson Sampling (MBTS)
Algorithm

1: Initialize: ni = li = 0, αi = βi = Si = Fi = 0, ∀i ∈
[N ], batch = ∅.

2: for t = 1, 2, · · · , T do
3: Sample each θi(t) ∼ Beta(αi + 1, βi + 1),∀i ∈ [N ].
4: Transmit at rate ri(t), where

i(t) = arg max
i∈[N ]

riθi(t). (3)

5: Update ni(t) = ni(t) + 1.
6: Record (Si(t), Fi(t)) = (Si(t), Fi(t)) + (xi(t)(t), 1 −

xi(t)(t)).
7: if ni(t) < 2li(t) then
8: batch = batch

⋃
{i(t)}.

9: else
10: li(t) = li(t) + 1.
11: Update the posterior probability parameters:

(αi, βi) = (Si, Fi), ∀i ∈ [N ].

12: Start a new batch: batch = ∅.
13: end if
14: end for

The idea of the algorithm combines batch learning with
the standard TS method. For each link rate ri, the transmitter

Authorized licensed use limited to: Yale University. Downloaded on January 18,2023 at 02:20:42 UTC from IEEE Xplore.  Restrictions apply. 



keeps track of ni, i.e., the number of times rate ri is chosen.
Variable li is defined to determine the batch length such that
2li−1 ≤ ni < 2li . Denote Si and Fi to record the number
of successful and failed transmissions up to the last time
slot. Due to the limited policy switch times, the transmitter
can only sample θi(t) with the information gathered until the
last batch, i.e., αi and βi, instead of Si and Fi. This is the
main difference between the standard TS and the BTS method.
Compared with the standard BTS with Beta priors proposed in
[12], our MBTS algorithm computes the posterior probability
of θi instead of the expected per-slot throughput riθi. Despite
the little modification, in the following part, we will show it
will lead to remarkable regret performance compared with the
general BTS-based method.

B. Performance Analysis

In this part, we will evaluate the performance of the MBTS
algorithm, i.e., providing the upper bound for the number of
batches and the expected regret. The proof is mainly based
on [12] but needs some modification and improvement to be
applied to our problem.

Theorem 1: [12, Theorem 4.1 Restated] The number of
batches carried out by MBTS algorithm is O(N log T ).

Remark: Although previous works in [10] and [11] have
proven that it is sufficient to deploy O(log T ) batches (inde-
pendent of N ) to achieve the order-optimal O(N log T ) regret
in the batched stochastic MAB problem, the determination
of batch size in these works depends on the time horizon
T . However, in practice, the horizon T is always unknown.
To overcome this challenge, the batch size carried out in the
MBTS is adaptively chosen and is independent of the time
horizon T .

It is a little more delicate to obtain the regret upper bound
for the MBTS algorithm. For the following analysis, we
mainly adopt the definition from [12], and reproduce here for
convenience.

Definition 1 (ni(t) and µ̂(t)): Denote ni(t) to be the number
of times rate ri has been chosen until t−1. Define µ̂i(t) to be
the empirical mean of the transmission outcomes xi for rate
ri up to slot t− 1.

Definition 2 (Ft and B(t)): For each time slot t, define the
history of the selected rate and its outcomes as

Ft := {i(τ), xi(τ)(τ)|τ ≤ t}.

Denote B(t) to be the last time slot t′ ≤ t − 1 such that
the MBTS algorithm finishes a batch. Then, the information
collected at the current slot t is the history FB(t).

Definition 3 (Thresholds xi and yi): For each sub-optimal
link rate ri(i 6= i?), we choose two thresholds xi and yi (deter-
mined in later analysis) such that riθi < rixi < riyi < ri?θi? .

Definition 4 (Events Eθi (t) and Eµi (t)): Define Eθi (t) to be
the event {θi(t) ≤ yi}, and Eµi (t) to be the event {µ̂i(B(t)) ≤
xi}.

Definition 5 (Probability pi,t): Define the probability pi,t as
pi,t = P(ri?θi?(t) > riyi|FB(t)) = P(θi?(t) > riyi

ri?
|FB(t)).

The following theorem provides the problem-dependent
regret upper bound of the MBTS algorithm:

Theorem 2: The expected regret until the time horizon T
for the MBTS algorithm can be upper bounded by

R(T ) ≤ (1+ε)
∑
i6=i?

I
(
ri?θi?
ri
≤ 1
)

log T

D
(
θi,

ri?θi?
ri

) ∆i+O
(
N

ε2

)
, (4)

where ε ∈ (0, 1], ∆i = ri?θi? − riθi, and D(a, b) is
the KL divergence between two Bernoulli distributions with
parameters a and b, respectively.

Proof: The proof is provided in Appendix A.

C. General Batched Thompson Sampling Algorithm
Although the BTS algorithm proposed in [12] is mainly

analyzed with Beta and Gaussian priors, [7] has provided
a straightforward way to generalize the TS algorithm to
the general priors. Therefore, we can also design a general
batched Thompson Sampling (GBTS) algorithm for our link
rate selection problem. The idea of GBTS is to normalize the
transmission throughput such that y(t) =

ri(t)
rN

xi(t)(t). The
detailed description is omitted due to the space limitation. The
following theorem is an immediate result of Theorem 4.3 in
[12] for the GBTS algorithm.

Theorem 3: The expected regret of GBTS algorithm until
time T can be upper bounded by

R(T ) ≤ (1 + ε)
∑
i 6=i?

log T

D
(
ri
rN
θi,

ri?
rN
θi?
)∆i +O

(
N

ε2

)
, (5)

where ε ∈ (0, 1].
Comparing the regret bound in Theorem 2 and Theorem

3, we will find our MBTS algorithm is expected to outper-
form the GBTS method since for those parameters such that
ri?θi?
ri

> 1, MBTS can achieve O(1) regret (Case 2). This
implies that MBTS can quickly distinguish the link rate whose
expected throughput riθi is far from optimality.

D. Constrained Batched Thompson Sampling Algorithm
As mentioned in the previous section, the successful trans-

mission probability θi depends on each other, i.e., θ1 ≥ θ2 ≥
· · · ≥ θN . However, both MBTS and GBTS algorithms do not
utilize this prior information explicitly. Therefore, we follow
the instruction of [9] to improve the algorithm performance by
combining the prior information, and propose the constrained
batched Thompson Sampling (CBTS) algorithm. The idea of
CBTS is to sample a feasible θi satisfying the constraint.
Denote θ(t) = (θ1(t), θ2(t), · · · , θN (t)) to be the sample
vector in slot t, and Θ to be the feasible set satisfying the
prior information, i.e.,

Θ = {(θ1, θ2, · · · , θN )|θ1 ≥ θ2 ≥ · · · ≥ θN}. (6)

Based on MBTS described in Algorithm 1, CBTS improves
the step 3 to ensure the sample vector θ(t) in each slot belongs
to the feasible set Θ, i.e.,

θ(t) ∼ I(θ(t) ∈ Θ)

N∏
i=1

Beta(αi + 1, βi + 1). (7)
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Fig. 1. Expected regret performance in two cases.

In practice, this step can be done through discarding all the
infeasible θ(t) until sampling a feasible one, called “rejection
sampling” in [9].

IV. SIMULATION RESULTS

In this section, we provide simulation results to validate
the performance of our proposed algorithms. We consider a
single-link 802.11g system with N = 8 possible link rates
(same in [1]), i.e., [6, 9, 12, 18, 24, 36, 48, 54] (in Mbit/s). We
evaluate the performance of our proposed algorithms under
different successful transmission probability θi (same in [9])
in T = 105 consecutive slots, where each algorithm is run 100
times for average.

First, we consider the gradual θi case, i.e., the cor-
responding successful transmission probability for each ri
is [0.95, 0.9, 0.8, 0.65, 0.45, 0.25, 0.15, 0.1]. Through compu-
tation, the expected throughput for each link rate riθi
is [5.7, 8.1, 9.6, 11.7, 10.8, 9, 7.2, 5.4]. Therefore, the optimal
link rate ri? = 18Mbit/s. We validate the performance of the
proposed MBTS, CBTS, and GBTS algorithms compared with
the UCB-based successive elimination (UCB-SC) algorithm in
[11] and other current link rate selection policies without batch
learning such as Modified TS (MTS) in [8], and Constrained
TS (CoTS) in [9], as depicted in Fig. 1(a).

For consistency, we set the batch numbers B = dN log T e
in the UCB-SC algorithm, where d·e is the ceiling function.
Although all the algorithms depicted in Fig. 1(a) are proven
to achieve the O(N log T ) regret performance theoretically,
our proposed MBTS and CBTS algorithms outperform the
other batched link rate selection policies. In general, the TS-
based algorithms can achieve better performance than the
UCB-based method. This is because the TS-based algorithm
selects the link rate according to the posterior probability,
while the UCB-based algorithm selects the candidate of all
possible optimal link rates uniformly. Therefore, the sub-
optimal link rate will be selected more times under the UCB-
SC, especially in the early period. The superiority of MBTS
and CBTS has been explained in the above section, i.e., the
proposed algorithms can achieve O(1) regret for the distinct
sub-optimal link rate. To better show this advantage, Table I
records the selection times for all the link rates under different
policies in one sample path. Notice that rate r1 and r2 satisfy
the condition ri?θi?

ri
> 1. Therefore, both MBTS and CBTS

discard these two options quickly even without choosing them,
which leads to better regret performance.

Compared with the link rate selection policies without batch
learning, it is intuitive to expect the high regret of batch
learning algorithm at the cost of low policy switching times.
In fact, both CoTS and MTS methods require T = 105 times
of policy switch, while our proposed algorithms only need
at most 132 times of updating policy. However, Fig. 1(a)
demonstrates that our CBTS algorithm can still outperform
the MTS method with the help of the prior information about
the link rate.

TABLE I
SELECTION TIMES FOR DIFFERENT LINK RATE IN THE GRADUAL CASE

Policy r1 r2 r3 r4 r5 r6 r7 r8

UCB-SC 1967 4159 12730 39885 38850 1349 631 429
GBTS 158 393 143 97575 977 492 128 134
MBTS 0 0 85 96990 2235 316 235 139
CBTS 0 0 5 96920 2217 663 172 23

Next, we consider the steep θi case, i.e., the transmission
probability is either very high or quite low. We
choose θi as [0.99, 0.98, 0.96, 0.93, 0.9, 0.1, 0.06, 0.04],
and the expected throughput can be computed as
[5.94, 8.82, 11.52, 16.74, 21.6, 3.6, 2.88, 2.16]. The expected
and single sample path regret performance are depicted in
Fig. 1(b) and Table II, respectively. As portrayed in Fig. 1(b),
CBTS and MBTS can also achieve better performance than the
other two batch selection policies, and perform competitively
compared with MTS and CoTS without batch learning. This
again demonstrates that our proposed algorithms can achieve
a better trade-off between low regret and low policy switch
times.

However, while CBTS can outperform MBTS by consider-
ing the prior information of θi, it increases the computational
complexity significantly with the rejection sampling method.
This is because the probability of sampling a feasible θ(t)
is quite small when θ5 is close to 1, and θ1 to θ4 are almost
sampled from a uniform distribution between [0, 1] (since they
are hardly chosen). In fact, since ri?θi?

ri
is quite larger than

1 when i is small in this case, MBTS algorithm can also
quickly figure out the optimal link rate. Therefore, the rejection
sampling method is not always an efficient way to carry out the
CBTS algorithm, and MBTS is satisfactory enough to achieve
the trade-off between the low regret and the computational
complexity.

TABLE II
SELECTION TIMES FOR DIFFERENT LINK RATE IN THE STEEP CASE

Policy r1 r2 r3 r4 r5 r6 r7 r8

UCB-SC 377 488 924 3242 94380 290 129 170
GBTS 46 70 140 189 99486 26 21 22
MBTS 0 0 0 4 99932 18 25 21
CBTS 0 0 0 2 99966 19 11 2
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V. CONCLUSION

In this paper, we propose two algorithms called MBTS and
CBTS to maximize the expected cumulative throughput in the
point-to-point rate selection problem. These proposed methods
can adaptively identify the optimal link rate with unknown
channel statistics, and are proven to achieve the order-optimal
logarithmic regret bound with only logarithmic policy switch
times. Through simulation results, we validate the power
of batch learning in this problem, which can reduce the
policy deployment cost with little performance deterioration.
Interesting extensions include the rate selection strategy in
the multi-user scenario. The challenge mainly comes from
the joint batch length determination and the corresponding
theoretical convergence proof, which will be our future work.

APPENDIX A
PROOF OF THEOREM 2

Notice that the expected regret defined in Eq. (2) can be
rewritten as:

R(T ) =
∑
i 6=i?

∆iE[ni(T + 1)]. (8)

Therefore, it is sufficient to upper bound E[ni(T + 1)] for
each i 6= i?. As in [12], we split E[ni(T +1)] into three terms
based on the events defined in Definition 4:

E[ni(T + 1)] =

T∑
t=1

P(i(t) = i)

=

T∑
t=1

P(i(t) = i, Eµi (t), Eθi (t))

+

T∑
t=1

P(i(t) = i, Eµi (t), Eθi (t))

+

T∑
t=1

P(i(t) = i, Eµi (t)), (9)

where event Ā denotes the complement of event A.
For the first term in Eq. (9), we claim that it can be upper

bounded by O(1), whose proof is provided in Appendix B.
Now consider the second term in Eq. (9). Different from

[12], we study the following two cases:
Case 1: ri?θi?

ri
≤ 1.

In this case, we have θi < xi < yi <
ri?θi?
ri
≤ 1. Applying

[12, Lemma A.14], we have:
T∑
t=1

P(i(t) = i, Eµi (t), Eθi (t)) ≤ Li(T ) + 1, (10)

where Li(T ) = log T
D(xi,yi)

.
Case 2: ri?θi?

ri
> 1.

In this case, we have riθi
ri?

< rixi
ri?

< riyi
ri?

< θi? ≤ 1. Then,

we can choose yi ∈ (1, ri?θi?ri
) such that the event P(Eθi (t)) =

P(θi(t) > yi) = 0. Therefore, we have
T∑
t=1

P(i(t) = i, Eµi (t), Eθi (t)) = 0, (11)

Combining the above two cases, we can upper bound the
second term in Eq. (9) as follows

T∑
t=1

P(i(t) = i, Eµi (t), Eθi (t))

≤I
(
ri?θi?

ri
≤ 1

)(
log T

D(xi, yi)
+ 1

)
. (12)

For the last term in Eq. (9), we directly apply [12, Lemma
A.13] to have

T∑
t=1

P(i(t) = i, Eµi (t)) ≤ 2

D(xi, θi)
+ 1. (13)

Now it remains to determine the threshold xi and yi when
ri?θi?
ri

≤ 1. To obtain the problem-dependent regret bound,
for 0 ≤ ε < 1, we choose xi such that D(xi,

ri?θi?
ri

) =
D(θi,

ri?θi?
ri

)

1+ε , and yi such that D(xi, yi) =
D(xi,

ri?θi?
ri

)

1+ε =
D(θi,

ri?θi?
ri

)

(1+ε)2 . After some manipulations, we have:

xi − θi ≥
ε

1 + ε

D(θi,
ri?θi?
ri

)

log
(
ri?θi? (1−θi)
θi(ri−ri?θi? )

) .
Then the Pinsker’s inequality implies that 1

D(xi,θi)
≤

1
2(xi−θi)2 = O

(
1
ε2

)
. Combining Eq. (17), Eq. (12) and

Eq. (13) with the choice of xi and yi, we have

E[ni(T + 1)]

≤O(1) + I
(
ri?θi?

ri
≤ 1

)
(1 + ε)2 log T

D(θi,
ri?θi?
ri

)
+O(

1

ε2
)

≤(1 + ε′)
I
(
ri?θi?
ri
≤ 1
)

log T

D(θi,
ri?θi?
ri

)
+O(

1

ε′2
),

where ε′ = 3ε. Combining the result with Eq. (8) yields
Theorem 2.

APPENDIX B
PROOF OF THE O(1) BOUND OF THE FIRST TERM IN EQ. (9)

First, we establish a relationship between the probability of
selecting any sub-optimal rate ri and the optimal ri? while
two events Eθi (t) and Eµi (t) happen.

Lemma 1: For all rate ri, i 6= i?, we have

P(i(t) = i, Eµi (t), Eθi (t)|FB(t))

≤1− pi,t
pi,t

P(i(t) = i?, Eµi (t), Eθi (t)|FB(t)). (14)

Proof: The proof is similar to the one in [8, Lemma 1],
and thus is omitted here.

Authorized licensed use limited to: Yale University. Downloaded on January 18,2023 at 02:20:42 UTC from IEEE Xplore.  Restrictions apply. 



With Lemma 1, we can bound the first term in Eq. (9) as
T∑
t=1

P(i(t) = i, Eµi (t), Eθi (t))

≤
T∑
t=1

E[P(i(t) = i, Eµi (t), Eθi (t)|FB(t))]

≤
T∑
t=1

E
[

1− pi,t
pi,t

P(i(t) = i?, Eµi (t), Eθi (t)|FB(t))

]

=

T∑
t=1

E
[
E
[

1− pi,t
pi,t

I(i(t) = i?, Eµi (t), Eθi (t)|FB(t))

]]

≤
T∑
t=1

E
[

1− pi,t
pi,t

I(i(t) = i?, Eµi (t), Eθi (t))

]
, (15)

where I(·) is the indicator function.
Here we correct the notation and analysis in [12]. Denote

τ ′k to be the time step that rate ri? has been selected for the
k-th time (τ ′0 = 0). Then, we define another sequence {τk}
such that

τk =


B(τ ′k+1), if τ ′k is the last selection of ri?

in the current batch;
τ ′k, else.

Then we have
T∑
t=1

E
[

1− pi,t
pi,t

I(i(t) = i?, Eµi (t), Eθi (t))

]
(a)

≤
T−1∑
k=0

E

[
1− pi,τk+1

pi,τk+1

τk+1∑
t=τk+1

I(i(t) = i?, Eµi (t), Eθi (t))

]
(b)

≤
T−1∑
k=0

E
[

1− pi,τk+1

pi,τk+1

]
, (16)

where (a) holds since we divide the whole time horizon by
τk and pi,t remains the same in each interval, and (b) holds
since in t ∈ [τk + 1, τk+1], ri? is selected at most once by the
definition of τk.

Then, similar to [7, Lemma 2.9], we can upper bound the
term E

[
1−pi,τk+1

pi,τk+1

]
as follows:

Lemma 2: For any sub-optimal rate ri, i 6= i?, we have

E
[

1

pi,τk+1
− 1

]

≤


3

∆′i
, for ni?(B(τk + 1)) < 8

∆′i
,

Θ

(
e−

∆′2i k
4 + e−

Dik
2

( k2 +1)∆′2i
+ 1

e
∆′2
i
k

16 −1

)
, else,

where ∆′i = θi? − riyi
ri?

, and Di = D
(
riyi
ri?

, θi?
)

.
Remark: We correct the mistake made in [12, Lemma A.11],

although it does not affect the following analysis in that paper.
The above lemma can be obtained by replacing k in [7, Lemma
2.9] with ni?(B(τk + 1)) and applying ni(B(t)) ≥ 1

2ni(t)
deduced in [12, Lemma A.9].

Combining Eq. (15), Eq. (16) and Lemma 2, we can upper
bound the first term in Eq. (9) as

T∑
t=1

P(i(t) = i, Eµi (t), Eθi (t))

≤ 3

∆′i
I
(
ni?(B(τk + 1)) <

8

∆′i

)
+

T−1∑
k=0

Θ

(
e−

∆′2i k
4 +

e−
Dik

2(
k
2 + 1

)
∆′2i

+
1

e
∆′2
i
k

16 − 1

)
(a)

≤ 3

∆′i
I
(
k <

16

∆′i

)
+

T−1∑
k=0

Θ

(
e−

∆′2i k
4 +

e−
Dik

2(
k
2 + 1

)
∆′2i

+
1

e
∆′2
i
k

16 − 1

)

≤ 48

∆′2i
+ Θ

(
1

∆′2i
+

1

Di∆′2i
+

1

∆′4i

)
= O(1). (17)

where (a) holds by [12, Lemma A.9].
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