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Abstract: In this paper, we consider a scenario where the base station (BS) collects time-sensitive
data from multiple sensors through time-varying and error-prone channels. We characterize the data
freshness at the terminal end through a class of monotone increasing functions related to Age of
information (AoI). Our goal is to design an optimal policy to minimize the average age penalty of all
sensors in infinite horizon under bandwidth and power constraint. By formulating the scheduling
problem into a constrained Markov decision process (CMDP), we reveal the threshold structure for the
optimal policy and approximate the optimal decision by solving a truncated linear programming (LP).
Finally, a bandwidth-truncated policy is proposed to satisfy both power and bandwidth constraint.
Through theoretical analysis and numerical simulations, we prove the proposed policy is asymptotic
optimal in the large sensor regime.

Keywords: age of information; cross-layer design; constrained Markov decision process

1. Introduction

The requirements for data freshness in numerous emerging applications are becoming
stricter [1,2]. However, the limited resources and bandwidth, together with the fading
and error-prone channel characteristics, prevent the control terminal from obtaining the
newest information. Moreover, the traditional optimization goals like low delay and
high throughput cannot fully characterize the requirement of data freshness. Therefore,
it is necessary to introduce new metrics to capture data freshness in such systems and
design strategies to optimize the system performance in the presence of resource and
environment restrictions.

Recently, a popular metric, Age of information (AoI), has been proposed in [3] to
measure the data freshness. Since then, the optimization of age performance under different
systems has been a research hotspot. The simple point-to-point system model has been
studied in [3–11]. When update packets are generated by external sources and are queued
in a buffer before transmission, queuing theory can be used to analyze the performance of
such system, see, e.g., in, [3–8]. In [3], it is shown that the optimum packet generation rate
of a first-come-first-served (FCFS) system should achieve a trade-off between throughput
and delay. In [8], dynamic pricing is used as an incentive to balance the AoI evolution and
the monetary payments to the users. Other studies [9–11] consider the generate-at-will
system without a queue. Energy constraints are studied in [10,11] to find the trade-off
between the age performance and energy consumption. In [11], both offline and online
heuristic policies are proposed to optimize the average AoI, which outperform the greedy
approach.

Apart from the point-to-point systems, scheduling strategies in the multi-user net-
works are studied in [12–19]. Different scheduling policies are studied in [12] to minimize
the average AoI performance through unreliable channels, and Maatouk et al. verify the
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asymptotic optimality of Whittle’s index policy by setting an upper bound on the maximum
AoI [13]. When each user has a minimum throughput requirement, the authors of [14]
propose the Drift-Plus-Penalty policy using Lyapunov analysis to minimize the average
AoI performance. In [17], a slotted ALOHA algorithm is proposed to minimize the average
AoI, whose performance is verified in the large system regime.

Notice that in many general scenarios, like remote estimation [20,21], the proper
evaluation of data freshness is a function of AoI instead of AoI itself. Therefore, the metric
of Cost of Update Delay (CoUD) in [7] and age penalty function in [9] have been proposed
to measure data freshness in a general setting. However, those works focus on minimizing
data freshness in a single-user network, and the multi-user model is rarely considered.
To fill this gap, we study a scenario where the base station (BS) collects time-sensitive
data from multiple sensors through time-varying channels. We generalize our previous
work [22] by considering a more realistic time-varying channel with packet loss and a
more general age penalty measurement to model different application scenarios. The main
contributions of the paper are listed as follows.

• We study the scheduling strategy for age penalty minimization in multi-sensor band-
width constrained networks through time-varying and error-prone channel links with
power limited sensors. To study a practical network, we model the channel to be a
finite-state ergodic Markov chain. The packet loss probability and power consumption
depend on the current channel state. Unlike previous work, we model the effect of
data staleness in different scenarios via a class of monotone increasing function related
to AoI.

• Through relaxing the hard bandwidth constraint and Lagrange multipliers, we de-
couple the multi-sensor optimization problem into several single-sensor constrained
Markov decision process (CMDP) problems. To deal with the potential infinite age
penalty, we deduce the threshold structure of the optimal policy and then obtain the
approximate optimal single-sensor scheduling decision by solving a truncated linear
programming (LP). We prove the solution to the LP is asymptotic optimal when the
truncated threshold is sufficiently large.

• The sub-gradient ascend method is applied to find the optimal Lagrange multiplier to
satisfy the relaxed bandwidth constraint. Finally, we propose the truncated stationary
policy to meet the hard bandwidth constraint. The average performance of the strategy
is verified through theoretical analysis and numerical simulations.

The remainder of this paper is organized as follows. The network model, the AoI
metric, and the age penalty function are introduced in Section 2. In Section 3, we formulate
the primal scheduling problem, and then decouple it into independent single-sensor
problems through bandwidth relaxation and Lagrange multipliers. The approximate
optimal policy for single-sensor problem is obtained in Section 4 by solving an LP. In
Section 5, the asymptotic optimal truncated policy is proposed. Finally, Section 6 provides
simulation results to verify the performance of the proposed truncated policy, and Section 7
draws the conclusion.

Notations: All the vectors and matrices are denoted in boldface. The probability of A
given B is denoted as Pr(A|B). Let Eπ [X] be the expectation of variable X given π. The
cardinality of a set Ω is written as |Ω|.

2. System Model
2.1. Network Model

In this work, we consider a BS collecting update packets from N time-sensitive sensors
through time-varying channels. The time is slotted, and t ∈ {1, 2, ..., T} is used to denote
the current slot index. Define un(t) to be the scheduling decision for sensor n in slot t,
where un(t) = 1 means the sensor n chooses to send the newest packet, while un(t) = 0
means idling the channel link. Assume all the scheduling behaviors take place at the
beginning of each slot and the packet transmission delay through all the channel links is
one slot. Due to the limited bandwidth capacity of the BS, the total number of sensors to
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be scheduled in one slot cannot be larger than M. Here, we assume M < N so that the
problem is nontrivial:

N

∑
n=1

un(t) ≤ M, ∀t. (1)

To model the time varying effect, we assume that the channel link connecting the BS
and each sensor n is an ergodic Q-state Markov chain. Denote qn(t) ∈ {1, 2, ..., Q} to be the
channel state of link n in slot t. Without loss of generality, we assume that the channel state
becomes more noisy as the state index becomes larger. Denote Pn = {pn

ij} to be the Markov
state transition matrix of link n, and the entry pn

ij means the probability of changing into
state j in the next slot given the current state i, i.e.,

pn
ij , Pr{qn(t + 1) = j|qn(t) = i}. (2)

Due to different channel states, the sensors should use different energy for both saving
energy and successful decoding of the packet at the receiver. We denote w(q) to be the
energy consumption for scheduling when the channel state is q. Notice that the energy
consumption tends to be larger as the channel state becomes more noisy to combat the
channel fading, i.e., w(1) < w(2) < ... < w(Q). Besides, due to the power limit of each
sensor n, the total average power consumption cannot exceed the upper bound, denoted
by En, i.e.,

lim
T→∞

1
T
Eπ

[
T

∑
t=1

un(t)w(qn(t))

]
≤ En, ∀n, (3)

where π is a scheduling policy.
Given channel state q, we assume that there exists the probability of packet loss εn,q

through link n due to decoding error or inaccurate estimation.

2.2. Age of Information and Age Penalty

In the network described above, the BS wishes to obtain the freshest information for
further process or accurate prediction. We model the data staleness at the terminal end as a
monotone increasing age penalty function f (·) of Age of information (AoI). By definition,
AoI is the difference between the current time slot and the time slot that the freshest data
received by the BS is generated by the sensor [3].

Let xn(t) be the AoI of sensor n in slot t. According to the definition, if the sensor is
scheduled in slot t and there is no packet loss, then xn(t + 1) = 1; otherwise, xn(t + 1) =
xn(t) + 1. In conclusion, the AoI evolves as follows,

Pr(xn(t + 1) = x′|xn(t) = x, un(t) = u) =


1− εn,qn(t), x′ = 1, u = 1;
εn,qn(t), x′ = x + 1, u = 1;
1, x′ = x + 1, u = 0;
0, otherwise.

(4)

3. Problem Formulation and Decomposition
3.1. Problem Formulation

For given network, we measure the data freshness at the terminal side by computing
the average age penalty under scheduling policy π, denoted by J(π), i.e.,

J(π) = lim
T→∞

1
NT

Eπ

[
T

∑
t=1

N

∑
n=1

f (xn(t))|x(0)
]

, (5)

where x(0) = [x1(0), x2(0), ..., xN(0)] states the initial AoI of the system. In this work,
we assume that the system is synchronized with all the sensors at the beginning, i.e.,
xn(0) = 1, ∀n, and thus omit x(0) in the further analysis.
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We denote ΠCP to be the set of all possible causal policies whose decisions are only
based on current and historic information while satisfying both bandwidth and power
constraints. Then, our goal is to optimize Equation (5) by choosing a scheduling policy
π ∈ ΠCP. Therefore, the primal optimization problem can be written as

Problem 1 (Primal Scheduling Problem).

min
π∈ΠCP

lim
T→∞

1
NT

Eπ

[
N

∑
n=1

T

∑
t=1

f (xn(t))

]
, (6a)

s.t.
N

∑
n=1

un(t) ≤ M, ∀t, (6b)

lim
T→∞

1
T
Eπ

[
T

∑
t=1

un(t)w(qn(t))

]
≤ En, ∀n. (6c)

3.2. Problem Decomposition

Notice that Equation (6b) is an integer programming where the exponential growth
rate of state and action space set obstacles in solving Problem 1. Therefore, we formulate
a relaxed version of Problem 1, where the primal bandwidth constraint in every slot is
replaced by a time-average bandwidth constraint. We will then show that the relaxed
problem can be solved by sensor level decoupling, which greatly reduces the cardinality of
the state and action space.

Problem 2 (Relaxed Primal Scheduling Problem).

Age∗R = min
π∈ΠCP

lim
T→∞

1
NT

Eπ

[
N

∑
n=1

T

∑
t=1

f (xn(t))

]
, (7a)

s.t. lim
T→∞

1
T
Eπ

[
T

∑
t=1

N

∑
n=1

un(t)

]
≤ M, (7b)

lim
T→∞

1
T
Eπ

[
T

∑
t=1

un(t)w(qn(t))

]
≤ En, ∀n. (7c)

Denote π∗R to be the optimal policy of Problem 2. The following theorem ensures that
the optimal policy of the relaxed problem is composed of several local optimal policies π∗n,
each of which depends on its own channel state and AoI evolution regardless of others.

Theorem 1. The optimal policy of Problem 2 can be decoupled into local optimal policies, i.e.,
π∗R = π∗1 ⊗ π∗2 ⊗ · · · ⊗ π∗N . Each of the local policy π∗n has the following properties.

Age∗R = lim
T→∞

1
NT

T

∑
t=1

N

∑
n=1

Eπ∗n [ f (xn(t))],

lim
T→∞

1
T

T

∑
t=1

N

∑
n=1

Eπ∗n [un(t)] ≤ M,

lim
T→∞

1
T
Eπ∗n

[
T

∑
t=1

un(t)w(qn(t))

]
≤ En, ∀n.

The proof of Theorem 1 is provided in Appendix A.
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In order to find the local optimal polices, we introduce a Lagrange multiplier λ ≥ 0 to
eliminate the relaxed bandwidth constraint, and the Lagrange function is as follows,

L(π, λ) = lim
T→∞

1
NT

N

∑
n=1

T

∑
t=1

Eπn

[
f (xn(t)) + λun(t)− λ

M
N

]
,

where the Lagrange multiplier λ can be seen as a scheduling penalty which will increase
the function value if there are more than M sensors to be scheduled per slot in average.

For fixed λ, we can now further decouple the relaxed scheduling problem into N
single-sensor cross-layer designs, each of which has the corresponding power constraint in
Equation (7c):

Problem 3 (Single-Sensor Decoupled Problem).

min
πn∈ΠCP

lim
T→∞

1
T
Eπn

[
T

∑
t=1

( f (xn(t)) + λun(t))

]
, (8a)

s.t. lim
T→∞

1
T
Eπn

[
T

∑
t=1

un(t)w(qn(t))

]
≤ En. (8b)

As the resolution of each decoupled problem is independent of n, we omit the subscript
n in further analysis.

4. Single-Sensor Problem Resolution
4.1. Constrained Markov Decision Process Formulation

First, we notice that the decoupled problem is a constrained Markov decision process
of which the elements (S,A, Pr(·|·), c(·)) and constraint are explained as follows.

• State Space: The state of each sensor consists of two parts: the current AoI x(t) and
channel state q(t). Thus, S = {x× q} is infinite but countable.

• Action Space: There are two possible actions in the action space A for the scheduling
policy, denoted by u(t). Action u(t) = 1 means the sensor chooses to schedule
while u(t) = 0 means idling. Notice that here u(t) does not need to satisfy the
bandwidth constraint.

• Probability Transition Function: According to Equations (2) and (4), the probability
transition function can be written out as follows.

Pr((x + 1, q′)|(x, q), u = 0) = pqq′ ,

Pr((x + 1, q′)|(x, q), u = 1) = pqq′ εn,q,

Pr((1, q′)|(x, q), u = 1) = pqq′(1− εn,q).

• One-Step Cost: The one-step cost consists of two parts: the age penalty growth and
scheduling penalty, which can be computed by

cx(x(t), q(t), u(t)) = f (x(t)) + λu(t). (9)

And the one-step power consumption is

cE(x(t), q(t), u(t)) = u(t)w(q(t)). (10)
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Now our goal is to optimize the following average one-step cost,

min
π∈ΠCP

lim
T→∞

1
T
Eπ

[
T

∑
t=1

cx(x(t), q(t), u(t))

]
, (11)

under the following average power constraint,

lim
T→∞

1
T
Eπ

[
T

∑
t=1

cE(x(t), q(t), u(t))

]
≤ E . (12)

4.2. Characterization of the Optimal Policy

To search for the stationary optimal policy, we can further introduce another Lagrange
multiplier ν ≥ 0 to eliminate the power constraint, i.e.,

1
T
Eπ

[
T

∑
t=1

cx(x(t), q(t), u(t)) + νcE(x(t), q(t), u(t))

]
− νE .

The multiplier ν can be viewed as a power penalty, which will increase the Lagrange
function once the average power consumption exceeds the constraint. Then minimizing
the above Lagrange function for fixed ν becomes an MDP problem without any constraint.

The following lemma ensures that the optimal stationary policy for the MDP problem
has a threshold structure.

Lemma 1. The optimal stationary policy of the unconstrained MDP problem has the threshold
structure, i.e., given state (x, q), there exists a threshold τq such that if x ≥ τq, then it is optimal to
schedule the sensor; otherwise, idling is the optimal action.

Proof sketch: The complete proof is provided in Appendices B and C, which is similar
to Theorem 2 in [23]. Despite the complex proof, the intuition is simple. As it is optimal to
schedule the sensor in state (x, q), then it is also the optimal action in state (x′, q), ∀x′ > x
because the AoI is much bigger.

4.3. Linear Programming Approximation

Now, we focus on finding the optimal stationary policy. Denote ξx,q to be the schedul-
ing probability given state (x, q) and our goal is to find {ξ∗x,q} that minimizes the objective
function. In this part, we will approximate {ξ∗x,q} by solving a truncated LP.

According to Lemma 1, for the optimal stationary policy, we can set a threshold
X > maxq τq and then we have ξ∗x,q = 1, ∀x ≥ X. Next, we focus on searching for policies
that possesses this threshold property as other policies are far from optimality.

Let µx,q be the steady distribution of state (x, q). Then, define a new variable yx,q ,
µx,qξx,q. The following theorem converts the CMDP problem into an infinite LP problem.

Theorem 2. The single-sensor decoupled problem is equal to the following infinite LP problem.

{µ∗x,q, y∗x,q} = arg min
µx,q ,yx,q

Q

∑
q=1

∞

∑
x=1

( f (x)µx,q + λyx,q), (13a)
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s.t.
Q

∑
q=1

∞

∑
x=1

µx,q = 1, (13b)

µ1,q′ =
Q

∑
q=1

∞

∑
x=1

(1− εq)pqq′yx,q, (13c)

µx,q′ =
Q

∑
q=1

pqq′ [µx−1,q − (1− εq)yx−1,q], ∀x ≥ 2, (13d)

Q

∑
q=1

∞

∑
x=1

yx,qw(q) ≤ E , (13e)

0 ≤ µx,q ≤ 1, 0 ≤ yx,q ≤ µx,q. (13f)

Proof. Let us consider the average cost of Equation (8a) by using µx,q and yx,q. Invoking
Equation (9), the one step cost of state (x, q) is either f (x) + λ when scheduling or f (x)
when idling. Therefore, the time average cost can be computed as follows,

Q

∑
q=1

∞

∑
x=1

µx,q[ξx,q( f (x) + λ) + (1− ξx,q) f (x)] =
Q

∑
q=1

∞

∑
x=1

( f (x)µx,q + λyx,q),

which is equivalent to Equation (13a).
Similarly, according to Equation (10), the time average power consumption is

Q

∑
q=1

∞

∑
x=1

µx,q[ξx,qw(q)] =
Q

∑
q=1

∞

∑
x=1

yx,qw(q),

which is exactly the LHS of Equation (13e).
Considering the property of steady probability distribution, Equation 13b,f are verified.
Finally, notice that the evolution of state (x, q) forms a Markov chain as depicted

in Figure 1 (top) for Q = 2 as an example. We use αx
q,q′ = Pr((x + 1, q′)|(x, q)) and

βx
q,q′ = Pr((1, q′)|(x, q)) to denote the transition probability between the states, which can

be computed as follows,

αx
q,q′ =

{
(1− ξx,q)pqq′ + ξx,qεq pqq′ , x < X;
εq pqq′ , x ≥ X.

(14)

βx
q,q′ =

{
ξx,q(1− εq)pqq′ , x < X;
(1− εq)pqq′ , x ≥ X.

(15)

According to the property of steady distribution, µx,q equals to the sum of the steady
distribution which can be transferred to µx,q in the next slot times their transition probability.
As depicted in Figure 1, µ2,2 = µ1,1α1

1,2 + µ1,2α1
2,2 (see the dashed lines). Therefore, we can

compute µx,q as follows,

µx,q′ =

{
∑Q

q=1 ∑∞
x′=1 βx′

q,q′µx′ ,q, x = 1;

∑Q
q=1 αx−1

q,q′ µx−1,q, x ≥ 2,

which is equivalent to Equation 13c,d.
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Figure 1. Illustration of the state transition graph for Q = 2 channel states without (top) and with
(bottom) AoI truncation with AoI threshold X = 3. The numbers in circles are channel state index q,
and the number in rectangles are AoI index x.

As the steady distribution is infinite, it is difficult to solve the problem exactly. There-
fore, we approximate the optimization problem in Theorem 2 into a finite LP problem
through truncation:

Problem 4 (Linear Programming Approximation).

{µ̃∗x,q, ỹ∗x,q} = arg min
µx,q ,yx,q

Q

∑
q=1

X

∑
x=1

( f (x)µx,q + λyx,q), (16a)

s.t.
Q

∑
q=1

X

∑
x=1

µx,q = 1, (16b)

µ1,q′ =
Q

∑
q=1

X

∑
x=1

(1− εq)pqq′yx,q, (16c)

µx,q′ =
Q

∑
q=1

pqq′ [µx−1,q − (1− εq)yx−1,q], ∀2 ≤ x ≤ X− 1, (16d)

µX,q′ =
Q

∑
q=1

pqq′ [µX−1,q + µX,q − (1− εq)(yX−1,q + yX,q)], (16e)

Q

∑
q=1

X

∑
x=1

yx,qw(q) ≤ E , (16f)

0 ≤ µx,q ≤ 1, 0 ≤ yx,q ≤ µx,q, (16g)

yX,q = µX,q. (16h)

After truncation, the optimal value of Equation (16a) is the lower bound of the objective
function of the decoupled problem Equation (8a). The detailed proof is provided in
Appendix D. The key concept is to set a threshold X and convert the Markov chain into a
finite-state one (see Figure 1).

Moreover, the following theorem guarantees the lower bound obtained by the above
LP problem is tight when X is sufficiently large. Thus, the approximate optimal solution
{µ̃∗x,q, ỹ∗x,q} performs close to the exact optimal solution {µ∗x,q, y∗x,q}. Before displaying the
theorem, first denote π∗X and π∗ to be the scheduling policy according to the approximate
optimal solution {µ̃∗x,q, ỹ∗x,q} by setting threshold X and optimal one {µ∗x,q, y∗x,q}, respectively.
Define J∞(π) to be the age and scheduling penalty of the primal problem under policy π
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and JX(π) is the approximate penalty when we set the age penalty f (x) = f (X), ∀x ≥ X.
Then, according to Equations (13a) and (16a), we have

J∞(π∗) =
Q

∑
q=1

∞

∑
x=1

( f (x)µ∗x,q + λy∗x,q), JX(π
∗
X) =

Q

∑
q=1

X

∑
x=1

( f (x)µ̃∗x,q + λỹ∗x,q).

Theorem 3. Assume f (x) satisfies the following property: ∃ ε ∈ [
√

εmax, 1) and constant k > 0
such that f (X) = kε−X and f (x) ≤ kε−x, ∀x ≥ X, where εmax = maxq εq. Then, we have the
following property,

J∞(π∗)− JX(π
∗
X) ≤

kε
X+1

2 −τmax
max

1− εmax
, (17)

where τmax = maxq τq. As we see the above inequality, the difference between optimal solution of
Theorem 2 and Problem 4 converges to 0 as the threshold X becomes sufficiently large.

The entire proof is provided in Appendix E.
After solving the above LP problem, we can obtain the approximate optimal schedul-

ing probability {ξ̃∗x,q} by setting a sufficiently large X and computing {µ̃∗x,q} and {ỹ∗x,q}.
Moreover, analogical to the threshold structure described in Lemma 1, {ξ̃∗x,q} also has the
following property.

Lemma 2. For any state (x, q) of each sensor, the optimal scheduling probability {ξ̃∗x,q} is non-
decreasing with x, i.e.,

ξ̃∗x1,q ≤ ξ̃∗x2,q, ∀x1 ≤ x2.

The proof technique is similar to Lemma 1, so it is omitted here.

5. Multi-Sensor Problem Resolution

By now, through relaxing, decoupling and truncation, we have obtained the approxi-
mate solution to the single-sensor decoupled problem for fixed scheduling penalty λ. In
this section, we will go back to solve the multi-sensor problem, and propose a truncated
policy to meet the hard bandwidth constraint in Equation (6b).

5.1. The Relaxed Problem Resolution

First, we should choose the optimal λ such that the relaxed bandwidth constraint can
be fully leveraged. Denote g(λ) = minπ L(π, λ) to be the Lagrange dual function, where
we choose the approximate optimal policy π∗(λ) by solving LP. Then, the dual function
can be computed as follows,

g(λ) =
1
N

(
N

∑
n=1

gn(λ)− λM

)
,

where gn(λ) = minπ Ln(π, λ) is the decoupled dual function for sensor n. According to
the LP approximation, gn(λ) can be further written out as follows,

gn(λ) = Xn(λ) + λUn(λ),

where Xn(λ) is the average age penalty bounded by ∑X
x=1 ∑Q

q=1 f (x)µ̃n,∗
x,q , and Un(λ) is the

average scheduling probability, which equals to ∑X
x=1 ỹn,∗

x,q .
According to the work in [24], the optimal Lagrange multiplier λ∗ satisfies

λ∗ = sup{λ|
N

∑
n=1

Un(λ) ≤ M}.
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If Un(λ∗) = M, then the optimal policy is just π(λ∗). Otherwise, the optimal policy is
a mixture of two policies, denoted by πl and πu, which can be computed by

πl = lim
λ→λ∗−

π(λ), πu = lim
λ→λ∗+

π(λ).

Then, we apply the sub-gradient ascend method to find the optimal solution, where
the sub-gradient can be computed as follows,

dλg(λ) =
N

∑
n=1

Un(λ)−M = U(λ)−M, (18)

where U(λ) = ∑N
n=1 Un(λ) is the total scheduling probability.

Choose λ0 = 0 as the starting point, and compute the average scheduling probability
U(λ0). If U(λ0) < M, then it does not need to consider the bandwidth constraint, and thus
the optimal solution has already been solved. Moreover, this optimal solution can also be
viewed as the lower bound of the primal optimization problem, i.e.,

LB =
1
N

N

∑
n=1

X

∑
x=1

Q

∑
q=1

f (x)µ̃n,∗
x,q (λ0).

Otherwise, we need to increase the scheduling penalty through iterations. The update
operation in iteration k can be written out as follows,

λk+1 = λk + tk+1dλg(λk),

where tk+1 is the step size in iteration k.
Moreover, the step size is determined as follows,

tk+1 =

{
γtk, dλg(λk)dλg(λk−1) < 0;
tk, otherwise,

where γ ∈ (0, 1) is a constant.
The determination of the step size above guarantees the algorithm converges from

both sides. Therefore, after running the whole algorithm, we can obtain two different
scheduling probabilities Ml and Mu:

Ml = max
k

U(λk), s.t. dλg(λk) ≤ 0; (19)

Mu = min
k

U(λk), s.t. dλg(λk) ≥ 0. (20)

Their corresponding optimal polices are denoted as {µ̃n,l
x,q, ỹn,l

x,q} and {µ̃n,u
x,q , ỹn,u

x,q }. Then,
the optimal stationary policy can be obtained by mixing these two policies:

{µ̃n,∗
x,q , ỹn,∗

x,q} = θ{µ̃n,u
x,q , ỹn,u

x,q }+ (1− θ){µ̃n,l
x,q, ỹn,l

x,q},

where the mixed coefficient can be computed as follows,

θ =
M−Ml
Mu −Ml

.

Now, we have obtained the optimal stationary policy of the relaxed scheduling prob-
lem. The algorithm flow chart is listed in Algorithm 1. Once we obtain {µ̃n,∗

x,q , ỹn,∗
x,q}, the

optimal scheduling probability {ξ̃n,∗
x,q} can be computed as follows,
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ξ̃n,∗
x,q =

1, if x > X or µ̃n,∗
x,q = 0 or ξ̃n,∗

x−1,q = 1;
ỹn,∗

x,q
µ̃n,∗

x,q
, otherwise.

Algorithm 1 Construction of the optimal stationary policy

Initialization: λ−1 = λ0 = 0, ε, t0, γ, Mu and Ml
for each n ∈ [1, N] do

compute {µ̃n,∗
x,q (λ0), ỹn,∗

x,q (λ0)} and Un(λ0)
end for
if dλg(λ0) ≤ 0 then
{µ̃n,∗

x,q , ỹn,∗
x,q} = {µ̃n,∗

x,q (λ0), ỹn,∗
x,q (λ0)}

else
k = 0
while |λk − λk−1| > ε or dλg(λk) > 0 do

if dλg(λk)dλg(λk−1) < 0 then
tk+1 = γtk

else
tk+1 = tk

end if
λk+1 = λk + tk+1dλg(λk)
for each n ∈ [1, N] do

compute {µ̃n,∗
x,q (λk+1), ỹn,∗

x,q (λk+1)} and Un(λk+1)
end for
if dλg(λk+1) ≥ 0 and U(λk+1) ≤ Mu then
{µ̃n,u

x,q , ỹn,u
x,q } = {µ̃n,∗

x,q (λk+1), ỹn,∗
x,q (λk+1)}

Mu = U(λk+1)
end if
if dλg(λk+1) ≤ 0 and U(λk+1) ≥ Ml then
{µ̃n,l

x,q, ỹn,l
x,q} = {µ̃n,∗

x,q (λk+1), ỹn,∗
x,q (λk+1)}

Ml = U(λk+1)
end if
k = k + 1

end while
θ = M−Ml

Mu−Ml

{µ̃n,∗
x,q , ỹn,∗

x,q} = θ{µ̃n,u
x,q , ỹn,u

x,q }+ (1− θ){µ̃n,l
x,q, ỹn,l

x,q}
end if

5.2. Truncation for the Hard Bandwidth Constraint

Finally, a bandwidth-truncated policy π̂X is derived from the optimal stationary
policy π∗X to satisfy the hard bandwidth constraint in Equation (6b). Before introducing
the truncated policy, first denote S(t) to be the set of sensors to be scheduled in slot t, and
|S(t)| is the number of sensors to be scheduled in slot t. Then, the construction of π̂X is
carried out as follows.

• In slot t, compute the scheduling set S(t) according to the optimal stationary policy π∗X .
• If |S(t)| ≤ M, then π̂X schedules all these sensors as π∗X does.
• If |S(t)| > M, the hard bandwidth constraint is never satisfied. Therefore, π̂X ran-

domly chooses M out of |S(t)| sensors to be scheduled in the current slot.

The following theorem guarantees the asymptotic performance of the truncated policy
π̂X compared with π∗X on certain conditions.

Theorem 4. Suppose the age penalty function is concave, and let κ = M
N be a constant. If all

the sensors and their channels are identical, i.e., the power constraint and the channel transition
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matrix are the same, then the truncated policy π̂X and the optimal randomized policy π∗X have the
following property,

lim
N→∞

J(π̂X)− J(π∗X) = 0.

The whole proof is provided in Appendix F.

6. Simulation Results

In this section, we provide simulation results to verify the performance of the proposed
policy. First, we study the average age penalty performance with different types of sensors
with different bandwidth constraint and AoI truncation threshold X. Next, we study
the detailed scheduling decision of each sensor. The average performance is obtained by
simulating 105 consecutive slots.

6.1. Average Age Penalty Performance

In this part, we demonstrate the average performance of our proposed policy. We consider
4-state channel system, i.e., Q = 4. The age penalty function is chosen as f (x) = ln(x) unless
otherwise specified. The transition matrix Pn for each sensor is the same:

Pn =


0.4 0.3 0.2 0.1
0.25 0.3 0.25 0.2
0.2 0.25 0.3 0.25
0.1 0.2 0.3 0.4

. (21)

Denote {ηq} to be the steady distribution of the channel state. We consider that for
each channel state q, the energy consumption w(q) = q. According to [12], the optimal
policy to minimize the average AoI performance when all the sensors are identical is a
greedy policy, which schedules the M sensors with the largest AoI and consumes the
average power for each sensor EG = M

N ∑Q
q=1 ηqw(q). Therefore, define ρn = En

EG
to be the

power constraint factor which describes the effects of power consumption constraint En.
Figure 2 demonstrates the average age penalty performance of the proposed policy

π̂X as a number of sensors N, with bandwidth constraint M = {5, 15}, compared with
the lower bound, the relaxed optimal policy π∗X and the greedy policy. Set the threshold
X = d 20N

M e, where d·e is ceiling function. We assume that the probability of packet loss for
each sensor is the same, denoted by ε:

ε = [0.1, 0.3, 0.2, 0.4].

The power constraint factor of sensor n is ρn = 0.2 + 1.4(n−1)
N−1 .

As seen in Figure 2, the proposed truncated policy performs closely to the relaxed
optimal policy and the lower bound, and outperforms the greedy policy especially when
N is large. According to Figure 2, the age penalty decreases by 18% and 23% from the
greedy policy with N = 60 sensors when M = 5 and M = 15, respectively, under
proposed policy. Moreover, as the threshold X becomes large, the difference between the
average performance following policy π∗X and the lower bound becomes indistinguishable.
Therefore, the asymptotic performance described in Theorem 3 can be verified.
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Figure 2. Average age penalty performance as a number of sensors N, M = {5, 15}.

Figure 3 compares the average performance of the proposed policy π̂X with the AoI-
minimum policy to verify the improvement of considering different penalty function. The
AoI-minimum policy is similar to the one proposed in our previous work [22] with the
consideration of packet loss. The bandwidth constraint M = 2. The packet loss probability
ε = [0.25, 0.35, 0.65, 0.8], and the energy consumption w(q) = 2q. Here the age penalty
function is chosen as f (x) = x2. From Figure 3, we can see that the AoI-minimum policy
cannot guarantee a good age penalty performance. Thus, it is necessary to consider different
demand for data freshness to achieve better performance.
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Figure 3. Average age penalty performance as a number of sensors N compared with AoI-minimum
policy.

Figures 4 and 5 verify the asymptotic performance of the proposed policy with dif-
ferent age penalty function and different packet loss probability respectively when M/N
is a constant in symmetric networks. From both figures, it can be seen that the difference
of average age penalty under proposed policy and the lower bound becomes small as N
increases. Thus, the asymptotic performance described in Theorem 4 can be verified.
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Figure 4. Asymptotic average age penalty performance with different age penalty function f (x) =
{ln x,

√
x}. κ = 1
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Figure 5. Asymptotic average age penalty performance with different packet loss probability.
ε = {[0.1, 0.3, 0.2, 0.4], [0.6, 0.55, 0.5, 0.45]}. κ = 1

8 .

6.2. Sensor Level Analysis and Threshold Structure

Next, we analyze the scheduling decision of each sensor and their corresponding age
penalty to provide some insights of optimal scheduling policies. We consider a system with
N = 8 and M = 2. The transition matrix of channel state is the same as Equation (21), and
power consumption w(q) = q. We set the threshold X = 80 to compute the proposed policy.

First we consider the system with Q = 4 and age penalty function f (x) = ln x.
Figure 6 analyzes how the power constraint influences age penalty of each sensor. The
power constraint of sensor n is ρn = 0.2n. From Figure 6, we can see that the proposed
policy outperforms the greedy policy when the required power consumption is scarce, and
performs similarly or a little worse when the factor ρn > 1. This implies that our proposed
policy chooses a more proper power allocation based on current channel state and AoI
than the greedy policy by stimulating sources with scarce power budgets to be scheduled
in better channel states.
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Figure 6. Each sensor’s average penalty with different power constraint factor ρn = 0.2n.

As the packet loss influences age penalty as well, Figure 7 considers sensors with
different probability of packet loss, which can be written out as the following matrix {εn,q}:

ε =



0.05 0.1 0.15 0.2
0.1 0.15 0.2 0.25
0.15 0.2 0.25 0.3
0.2 0.25 0.3 0.35
0.25 0.3 0.35 0.4
0.3 0.35 0.4 0.45
0.35 0.4 0.45 0.5
0.4 0.45 0.5 0.55


. (22)

We fix the power constraint factor ρn = 0.6 for all sensors. Figure 7 shows that the
average age penalty increases with the probability of packet loss. Moreover, the proposed
policy combats with the packet loss better than the greedy policy as the proposed policy
considers εn,q when solving the LP problem, but the greedy policy does not.

1 2 3 4 5 6 7 8
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0.4

0.6
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1.8

2

Greedy Policy

Proposed Policy

Figure 7. Each sensor’s average penalty with different packet loss probability εn,q = 0.05(n + q− 1).
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Next, we verify the threshold structure of the optimal scheduling policy. Figure 8
demonstrates the effect of bandwidth and packet loss on the scheduling threshold. The
power constraint factor ρn = 0.6, ∀n, and the packet loss probability is the same as
Equation (22). Subfigures (a–c) demonstrate three of these sensors whose packet loss
probability is as the title. For each of the three sensors, subfigures (d–f) consider the single-
sensor system without bandwidth constraint and display their scheduling probability,
respectively. Moreover, Figure 8 lists some of the thresholds given channel state q, e.g.,
in subfigure (a), the threshold of channel state q = 3 is x = 7, and the corresponding
optimal scheduling probability is ξ7,3 = 0.9963. From Figure 8, first we can see that all
the six figures verify the non-decreasing property of the scheduling probability with AoI
x(t) described in Lemma 2. Second, subfigures (a–c) demonstrate that the sensor with
higher packet loss probability also has higher scheduling threshold. This implies that the
sensors with more reliable channel should be given higher priority to scheduling than
unreliable ones to minimize the average age penalty, since scheduling the more reliable
channel under the same AoI is more likely to reduce the current age penalty. Third, by
comparing subfigures (a) and (d), (b) and (e), and (c) and (f), the scheduling threshold
varies more significantly for different channel states if there exists no bandwidth constraint.
The sensors tend to update more often when the channel state is good, and idle when
the channel state is bad. This is because the sensors can choose to update packets more
frequently in good channel state to both save energy and increase the success probability
of transmission without bandwidth constraint.

Figure 8. Subfigures (a–c) demonstrate the scheduling probability of sensors whose packet loss probability is as the title
when N = 8 and M = 2. Subfigures (d–f) demonstrate their scheduling probability in single-sensor system respectively. All
the power constraint is ρn = 0.6.

Finally, we study the effects of age penalty function on threshold structure. Here,
we consider a system with Q = 2, ρn = 0.2n and three different penalty function, i.e.,
f (x) = ln x, f (x) = x, and f (x) = x2 in Figure 9. We plot the scheduling decision of the
sixth sensor. As is depicted in Figure 9, as the system has a higher restriction on data
freshness such as exponential or quadratic function, the difference between thresholds of
different states becomes small. In such situations, channel states play a weaker role because
waiting for another slot to schedule tends to have unbearable age penalty.
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Figure 9. Threshold comparison with different age penalty function.

7. Conclusions

In this paper, we consider the multi-sensor scheduling problem through an error-prone
Markovian channel state. Through relaxing and decoupling, we propose a truncated policy
to satisfy both the bandwidth and power constraints to minimize the average age penalty
of all sensors in infinite horizon. We prove the asymptotic performance of the truncated
policy in symmetric networks when the age penalty function is concave by choosing a
sufficiently large threshold X. Through theoretical analysis and numerical simulations,
we find that the age penalty function, packet loss probability, bandwidth constraint, and
power constraint work altogether to influence the optimal scheduling decisions. Those
who have more reliable channel state and enough power consumption tend to have higher
scheduling priority.
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Appendix A. Proof of Theorem 1

First, we notice that Problem 2 is equivalent to the following optimization problem,
where we further introduce variables νn to denote the local bandwidth constraint of
sensor n.

Problem A1 (Equivalent Relaxed Primal Scheduling Problem).

Age∗R = min
π∈ΠCP ,{ν1,··· ,νN}

lim
T→∞

1
NT

Eπ

[
N

∑
n=1

T

∑
t=1

f (xn(t))

]
, (A1a)

s.t. lim
T→∞

1
T
Eπ

[
T

∑
t=1

un(t)

]
≤ νn, ∀n, (A1b)

N

∑
n=1

νn ≤ M, (A1c)

lim
T→∞

1
T
Eπ

[
T

∑
t=1

un(t)w(qn(t))

]
≤ En, ∀n, (A1d)

0 ≤ νn ≤ 1, ∀n. (A1e)

For each feasible fixed local bandwidth constraint vector {νn}, we can transfer the
above problem into the following one by removing constraint Equations (A1c) and (A1e).
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Problem A2 (Relaxed Problem for Fixed {νn}).

Age∗R(ν1, · · · , νn) = min
π∈ΠCP

lim
T→∞

1
NT

Eπ

[
N

∑
n=1

T

∑
t=1

f (xn(t))

]
, (A2a)

s.t. lim
T→∞

1
T
Eπ

[
T

∑
t=1

un(t)

]
≤ νn, ∀n, (A2b)

lim
T→∞

1
T
Eπ

[
T

∑
t=1

un(t)w(qn(t))

]
≤ En, ∀n. (A2c)

Then, according to the work in [25], the optimal policy of the Problem 6 given {νn}
can be decoupled into several local policies. This is somewhat intuitive as the con-
straints and objective function of Problem 6 are decoupled for each sensor n. As for
each feasible {νn}, the optimal scheduling policy can be decoupled, recall that Age∗R =
minν1,··· ,νN Age∗R(ν1, · · · , νN), when {νn} takes the optimum value {ν∗n}, the property
also holds.

Appendix B. Proof of Lemma 1

Before we proceed to the proof, we make two definitions. For any two states s = (x, q)
and s′ = (x′, q) ∈ S, define a partial order ≤s. We state that s ≤s s′ if and only if x ≤ x′.
Moreover, we also define a partial order ≤a on the action space A. We state that u ≤a u′ if
and only if u ≤ u′.

The monotonicity of the optimal action on the state space is true if the four following
conditions hold:

1. If s ≤s s′, c(s, u) ≤ c(s′, u) for any u ∈ A;
2. If s ≤s s′, for any u ∈ A, ∑s+ Pr(s+|s, u)V(s+) ≤ ∑s+ Pr(s+|s′, u)V(s+),

where V(s) is any monotone increasing function;
3. If s ≤s s′ and u ≤a u′, then c(s, u) + c(s′, u′) ≤ c(s′, u) + c(s, u′);
4. If s ≤s s′ and u ≤a u′, then:

∑
s+

Pr(s+|s, u)V(s+) + ∑
s+

Pr(s+|s′, u′)V(s+)

≤∑
s+

Pr(s+|s′, u)V(s+) + ∑
s+

Pr(s+|s, u′)V(s+);

where s, s′ ∈ S, u, u′ ∈ A. s+ ∈ S is the next state, and c(s, u) denotes the one-step cost
given the state s and action u.

Next, we consider a discounted cost MDP over a finite horizon:

min
π∈ΠCP

Eπ

[
T

∑
k=1

βkc(s(k), u(k))

]
, (A3)

where β is discounted factor.
And the corresponding Bellman equation is

VT,β(s) = min
u∈A

c(s, u); (A4)

Vk,β(s) = min
u∈A

[c(s, u) + β ∑
s+

Pr(s+|s, u)Vk+1,β(s+)], k = 1, 2, ..., T − 1. (A5)

If the above four conditions are satisfied and the corresponding Bellman function is
monotone increasing, then the one-step cost c(s, u) = cx(x, q, u) + νcE(x, q, u) is monotone
and sub-modular in s and u, which shows there exists an optimal monotone policy for any
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finite-time horizon MDP. Using the vanishing discount approach in Theorem 5.5.4 in [26],
the property of monotonicity is propagated to the time-average MDP.

Before verifying the above four conditions, first we introduce the following lemma to
ensure Vk,β(x, q) is monotone increasing with x, whose proof is provided in Appendix C.

Lemma A1. For fixed channel state q and discounted factor β, Vk,β(x, q) is monotone increasing
with x.

Therefore, we only need to show the decoupled unconstrained problem satisfies the
above four conditions.

Notice that the one-step cost can be computed by

c(s, u) = f (x) + λu + νw(q)u. (A6)

According to the definition of partial order ≤s and ≤a, and Equation (A6), we can
easily verify condition 1 and 3.

Also, we have:

∑
s+

Pr(s+|s, u)V(s+) =

{
∑q′ pqq′V(x + 1, q′), u = 0;

∑q′ [pqq′(1− εq)V(1, q′) + pqq′ εqV(x + 1, q′)], u = 1.
(A7)

According to Equation (A7) and the fact that V(x, q) < V(x′, q), ∀x < x′, it is also
feasible to verify that both condition 2 and 4 hold.

Appendix C. Proof of Lemma A1

In this part, we will prove that Vk,β(x, q) in the finite-time horizon MDP is an increasing
function with x. The key method of the proof is through induction.

Notice that VT,β(x, q) = minu∈A c(s, u) = minu∈A f (x) + λu + νw(q)u is increasing
with x. Suppose that Vt,β(x, q) is increasing with x, ∀t ≥ k. For ∀x1 < x2, we have

cx(x1, q, u) < cx(x2, q, u), cE(x1, q, u) = cE(x2, q, u).

Denote Jk−1,β(x, q, u) to be the expected discounted cost if take action u at state
(x, q). Then,

Jk−1,β(x1, q, 0) = cx(x1, q, 0) + β ∑
q′

pqq′Vk,β(x1 + 1, q)

< cx(x2, q, 0) + β ∑
q′

pqq′Vk,β(x2 + 1, q)

= Jk−1,β(x2, q, 0).

Similarly, we can derive that Jk−1,β(x1, q, 1) < Jk−1,β(x2, q, 1). According to the Bell-
man equation Equations (A4) and (A5), the value function Vk−1,β(x, q) can be computed
as follows,

Vk−1,β(x, q) = min
u∈A

Jk−1,β(x, q, u).

From the above, Jk−1,β(x1, q, u) < Jk−1,β(x2, q, u), ∀u ∈ A. Thus, Vk−1,β(x1, q) <
Vk−1,β(x2, q). Therefore, through induction, we verify that Vk,β(x, q) is increasing with x.

Appendix D. Derivation of Problem 4

First, make the following variable substitution,

µ′x,q =

{
µx,q, x < X;

∑∞
x′=X µx′ ,q, x = X.

(A8)
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Similarly, let

y′x,q =

{
yx,q, x < X;

∑∞
x′=X yx′ ,q, x = X.

(A9)

Instead of solving µx,q and yx,q in Theorem 2, we solve the new finite variables µ′x,q
and y′x,q. Therefore, the constraints Equation (13b), Equation (13c), Equation (13e), and
Equation (13f) become Equation (16b), Equation (16c), Equation (16f), and Equation (16g),
respectively. Equation (16d) corresponds to Equation (13d) when x ≤ X − 1. Otherwise,
sum all the Equation (13d) from X to infinity, i.e.,

∞

∑
x=X

µx,q′ =
∞

∑
x=X

Q

∑
q=1

pqq′ [µx−1,q − (1− εq)yx−1,q]

(a)
=

Q

∑
q=1

pqq′ [µX−1,q − (1− εq)yX−1,q]

+
∞

∑
x=X

Q

∑
q=1

pqq′ [µx,q − (1− εq)yx,q]

=
Q

∑
q=1

pqq′ [µX−1,q − (1− εq)yX−1,q]

+
Q

∑
q=1

pqq′ [
∞

∑
x=X

µx,q − (1− εq)
∞

∑
x=X

yx,q],

where (a) holds because we separate x = X from the sum.
Invoking Equations (A8) and (A9), the above equality is equivalent to

µ′X,q′ =
Q

∑
q=1

pqq′ [µ
′
X−1,q − (1− εq)y′X−1,q] +

Q

∑
q=1

pqq′ [µ
′
X,q − (1− εq)y′X,q]

=
Q

∑
q=1

pqq′ [µ
′
X−1,q + µ′X,q − (1− εq)(y′X−1,q + y′X,q)],

which is exactly equal to Equation (16e).
Notice that the optimal action is to schedule when x ≥ X, i.e., ξ∗x,q = 1. Thus,

y∗x,q = µ∗x,q, ∀x ≥ X. Therefore, we have

µ′X,q = y′X,q, (A10)

which is equal to Equation (16h).
By now, through variable substitution, we have verified the constraints of the finite

LP problem are equivalent to the ones of the original optimization problem. Therefore, the
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optimal solution to the finite LP problem is also feasible to the original problem. Now for
the objective function, we have

Q

∑
q=1

∞

∑
x=1

( f (x)µx,q + λyx,q)

=
Q

∑
q=1

X−1

∑
x=1

( f (x)µx,q + λyx,q) +
Q

∑
q=1

∞

∑
x=X

( f (x)µx,q + λyx,q)

≥
Q

∑
q=1

X−1

∑
x=1

( f (x)µx,q + λyx,q) +
Q

∑
q=1

∞

∑
x=X

( f (X)µx,q + λyx,q)

=
Q

∑
q=1

X−1

∑
x=1

( f (x)µ′x,q + λy′x,q) +
Q

∑
q=1

( f (X)µ′X,q + λy′X,q)

=
Q

∑
q=1

X

∑
x=1

( f (x)µ′x,q + λy′x,q).

Therefore, we have verified that the decoupled single-sensor problem is approximate
to the LP problem, which has the same constraint but can be the lower bound of the
original problem.

Appendix E. Proof of Theorem 3

Our aim is to bound J∞(π∗)− JX(π
∗
X). Recall that π∗ is the optimal solution to the

primal problem. Thus, the difference can be bounded by J∞(π∗X)− JX(π
∗
X).

To further bound the above term, first denote ρX
x,q and ξX

x,q to be the distribution and
scheduling probability of state (x, q) under policy π∗X , i.e.,

ρX
x,q = Eπ∗X

[
lim

T→∞

1
T

T

∑
t=1

I((x(t), q(t)) = (x, q))

]
, (A11)

ξX
x,q = Eπ∗X

[
lim

T→∞

1
T

T

∑
t=1

I(u(t) = 1|(x(t), q(t)) = (x, q))

]
, (A12)

where I(·) is indicating function.
Let γX

x,q = ρX
x,qξX

x,q. Recalling the approximation solution to Problem 4, we have

ρX
x,q = µ̃∗x,q, ∀x < X,

∞

∑
x=X

ρX
x,q = µ̃∗X,q; (A13)

γX
x,q = ỹ∗x,q, ∀x < X,

∞

∑
x=X

γX
x,q = ỹ∗X,q. (A14)

Then, we can bound J∞(π∗X)− JX(π
∗
X) as
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J∞(π∗X)− JX(π
∗
X)

=Eπ∗X

[
lim

T→∞

1
T

T

∑
t=1

( f (x(t)) + λu(t))

]
− JX(π

∗
X)

=Eπ∗X
[ lim
T→∞

1
T

T

∑
t=1

Q

∑
q=1

∞

∑
x=1

f (x)I((x(t), q(t)) = (x, q))

+ λI((x(t), q(t)) = (x, q), u(t) = 1)]− JX(π
∗
X)

(a)
=

Q

∑
q=1

∞

∑
x=1

(
f (x)ρX

x,q + λγX
x,q

)
− JX(π

∗
X) (A15)

=
Q

∑
q=1

X−1

∑
x=1

(
f (x)ρX

x,q + λγX
x,q

)
+

Q

∑
q=1

∞

∑
x=X

(
f (x)ρX

x,q + λγX
x,q

)

−
Q

∑
q=1

X

∑
x=1

( f (x)µ̃∗x,q + λỹ∗x,q)

(b)
=

∞

∑
x=X

( f (x)− f (X))
Q

∑
q=1

ρX
x,q,

where (a) holds because of Equations (A11) and (A12). (b) holds because of Equations (A13)
and (A14).

Next, we upper bound term ∑Q
q=1 ρX

x,q. For simplicity, denote ρX
x = [ρX

x,1, ρX
x,2, · · · , ρX

x,Q]
T .

Thus, we have
ρX

x+1 = αρX
x , ∀x ≥ τmax, (A16)

where the matrix α can be computed according to Equation (14) and further bounded
as follows,

α =


ε1 p1,1 ε2 p2,1 · · · εQ pQ,1
ε1 p1,2 ε2 p2,2 · · · εQ pQ,2
· · · · · · · · · · · ·

ε1 p1,Q ε2 p2,Q · · · εQ pQ,Q

 ≤ εmaxPT . (A17)

Therefore, ∑Q
q=1 ρX

x,q can be bounded as follows,

Q

∑
q=1

ρX
x,q = 1TρX

x

(a)
= 1Tαx−τmax ρX

τmax

(b)
≤ 1Tεx−τmax

max (PT)x−τmax ρX
τmax

(c)
= εx−τmax

max ,

(A18)

where 1 is all-one vector. (a) holds because of Equation (A16). (b) holds due to Equation (A17).
(c) holds because 1 is the eigenvector of P.
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Plugging Equation (A18) into Equation (A15), we have

J∞(π∗)− JX(π
∗
X) ≤

∞

∑
x=X

k(ε−x − ε−X)εx−τmax
max

=
∞

∑
x=X

k(ε
x
2−τmax
max − ε

x− X
2 −τmax

max )

=
kε

X+1
2 −τmax

max

1− εmax
.

Appendix F. Proof of Theorem 4

According to Lemma 2, the optimal policy for every decoupled single-sensor problem
has the threshold structure. Let τn

q be the threshold of sensor n given channel state q.
Denote Γn = maxq τn

q −minq τn
q to be the largest difference between different thresholds

of sensor n, and Γ = maxn Γn. As all the sensors are identical, Γ does not change with N.
Moreover, let S̄(t) = Eπ∗X

[S(t)].
Suppose that the sensor n is not scheduled under π̂X when un(t) = 1. Now consider

the probability that it is still not scheduled in the next slot, which results from two reasons,
i.e., it jumps into a state which has a higher scheduling threshold or there are still more
than M sensors to be scheduled. Let p be the probability that the channel state jumps into a
state having a higher scheduling threshold. Then, the probability of idling in the next slot,
denoted by pidle can be computed by

pidle = p + (1− p)
N −M

N
= p

M
N

+
N −M

N
.

Notice that p can be upper bounded as

p ≤ max
n,q

Q

∑
q′=1,q′ 6=q

pn
qq′ = max

n,q
(1− pn

qq).

Therefore, pidle can be upper bounded by z, which can be computed as

pidle ≤ z =
M
N

max
n,q

(1− pn
qq) +

N −M
N

.

Therefore, it can be generalized that the probability that it is still not scheduled in the
consecutive k slots is upper bounded by z(k−Γn)+ , where (·)+ = max(·, 0).

Now, we bound the different performance of π̂X and π∗X by introducing another policy
π̃X . Under π̃X , when |S(t)| > M, all these sensors are scheduled like π∗X , but add an extra
penalty an

x(t) for those sensors, which can be computed as

an
x(t) =

∞

∑
k=0

z(k−Γn)+( f (xn(t + k))− f (k))

(a)
≤

∞

∑
k=0

z(k−Γn)+( f (xn(t))− f (0))

≤
(

Γn +
1

1− z

)
f (xn(t))

≤
(

Γ +
1

1− z

)
f (xn(t)),

where (a) holds because f (x) is concave.
For simplicity, denote A = Γ + 1

1−z , which is a constant once the channel transition
matrix and power constraint are fixed.
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As the age penalty function f (x) is concave, the average age penalty cost under π̃X
does not decrease compared with π̂X . Then, the difference between J(π̂X) and J(π∗X) can
be bounded as

J(π̂X)− J(π∗X) ≤J(π̃X)− J(π∗X)

= lim
T→∞

Eπ∗X

[
1

NT

N

∑
n=1

T

∑
t=1

an
x(t)

(|S(t)| −M)+

M

]

≤ lim
T→∞

Eπ∗X

[
1

MNT

N

∑
n=1

T

∑
t=1

A f (xn(t))||S(t)| −M|
]

,

Notice that when x > X, the optimal action is to schedule. Hence, the probability of
xn(t) > X is upper bounded by (maxn,q εn,q)x−X . For simplicity, let ρ = maxn,q εn,q. Then,
∀ε > 0, there exists k = d ln ε

ln ρ e such that the steady distribution µn
x,q, ∀x > X + k and n can

be bounded as

Q

∑
q=1

µn
x,q ≤ ρx−X = ρkρx−(X+k) ≤ ερx−(X+k).

Then, we have

J(π̂X)− J(π∗X)

≤ lim
T→∞

1
MNT

Eπ∗X

[
N

∑
n=1

T

∑
t=1

Ixn(t)≤X+k A f (xn(t))||S(t)| −M|
]

+
1

MNT
Eπ∗X

[
N

∑
n=1

T

∑
t=1

Ixn(t)>X+k A f (xn(t))||S(t)| −M|
]

≤ lim
T→∞

A f (X + k)
M

Eπ∗X

[
1
T

T

∑
t=1

(||S(t)| − S̄(t)|+ |S̄(t)−M|)
]

+
1

MNT
Eπ∗X

[
N

∑
n=1

T

∑
t=1

Ixn(t)>X+k AN f (xn(t))

]

= lim
T→∞

A f (X + k)
κN

Eπ∗X

[
1
T

T

∑
t=1

(||S(t)| − S̄(t)|+ |S̄(t)−M|)
]

+
A
κ
Eπ∗X

[
1

NT

N

∑
n=1

T

∑
t=1

Ixn(t)>X+k f (xn(t))

]
.

(A19)

As f (x) is concave, it can be upper bounded by a linear function, i.e., f (x) ≤ mx, ∀x >
X + k. Therefore, the second term in the above inequality can be further bounded as

lim
T→∞

Eπ∗X

[
1

NT

N

∑
n=1

T

∑
t=1

Ixn(t)>X+k f (xn(t))

]
=

1
N

N

∑
n=1

∞

∑
x=X+k+1

Q

∑
q=1

µn
x,q f (x)

≤
∞

∑
x=X+k+1

mερx−(X+k)x

=mε

[
ρ

1− ρ
(X + k + 1) +

ρ2

(1− ρ)2

]
.

By choosing ε = N−1 and k = O(ln N), the second term in Equation (A19) converges
to 0 as N becomes large.
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For the first term in Equation (A19), according to the work in [27], the expectation of
||S(t)| − S̄| has the following property,

lim
T→∞

Eπ∗X

[
1
T

T

∑
t=1
||S(t)| − S̄(t)|

]
= O(

√
N).

In addition, as policy π∗X satisfies the relaxed bandwidth constraint, we have

lim
T→∞

Eπ∗X

[
1
T

T

∑
t=1
|S̄(t)−M|

]
= 0.

Therefore, when T → ∞, J(π̂X)− J(π∗X) can be upper bounded by

O
(

X + ln N√
N

)
+O

(
X + 1 + ln N

N

)
.

As the threshold X does not increase with N, J(π̂X)− J(π∗X) converges to 0 as N be-
comes infinite. Thus, the asymptotic performance of the truncated policy has been proven.
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