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Abstract—In this work, we consider a scenario where a
time sensitive source is broadcasted to multiple receivers by a
base station (BS) over unilateral networks. A recently proposed
metric–the Age of Information (AoI) is adopted to measure data
freshness from the perspective of receiver. Unlike previous work,
we consider that the BS receives no feedback from receivers and
thus broadcasts every fixed interval. We derived the optimum
fixed interval such that the average AoI can be minimized.
Our work suggests that, when the transmission delay is highly
random, the optimum fixed interval is larger than the expected
transmission delay so that success delivery to more users can be
guaranteed. Both theoretical analysis and simulation results show
that without feedback, the average AoI performance following
the proposed policy is near to transmission policy that utilizes
receiver feedback.

Index Terms—Age of Information, Multicast Network, Unilat-
eral Network

I. INTRODUCTION

Data freshness plays an important role in autonomous
vehicles and the Internet of Things (IoT) networks. In such
scenarios, the base station (BS) or the central controller
broadcasts time-sensitive information to multiple receivers via
multi-cast network. Due to the large number of access nodes
and limited communication resources, feedback from all the
receivers is impossible. This work accounts for this scenario
by designing multi-casting strategy in the absence of receiver
feedback.

The metric, Age of Information (AoI), namely the time
elapsed since the newest sample at the receiver is gener-
ated, has been proposed and widely adopted to measure
data freshness from the perspective of the receiver [1]. In
a multi-user setup, scheduling to minimize average AoI has
been studied recently in [2]–[10]. When the transmission
experiences delay or packet drop, Lyapunov optimization and
Whittle’s index approach have been used to design uni-cast
transmission strategy [2]–[6]. In multi-cast networks with
random transmission delay, it is found that starting a new
transmission after feedback from a group of receivers is
beneficial to minimize the average AoI performance [7]–[11].
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for Information Science and Technology under Grant BNR2019RC01014
and BNR2019TD01001, and Shanghai Municipal Science and Technology
Major Projec under Grant No.2018SHZDZX04. (Corresponding author: Jintao
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However, the above works assume feedback from the receiver
to be instantaneous and perfect. Recent work [12] studies AoI
minimization strategy when feedback from the receiver may
be incorrect. It is revealed that feedback erasure increases the
average AoI and thus studying transmission strategy under
imperfect feedback is a challenging task.

To address the challenge, we consider a BS multi-casts time-
sensitive information to receivers through channels with ran-
dom delay. The goal is to provide insight into the transmission
strategy design in the absence of user feedback. The model
can be used to model a variety of real-time applications like
web caching and autonomous vehicles. The main contribution
is that we optimize the average AoI by proposing a strategy
that multi-casts every fixed interval. We derived the optimum
multi-casting interval and show in simulation that by following
our proposed policy, no feedback causes subtle AoI growth
compared with updating strategies based on receiver feedback
in [10].

The remainder of the paper is organized as follows. The
system model and optimization problem is stated in Section
II. Section III proposes the fixed interval multi-casting strategy
and derives the optimum interval to achieve the minimum
average AoI. Numerical simulations are provided in Section
IV and Section V draws the conclusion.

II. PROBLEM FORMULATION

A. Network Model

We model the system as a BS broadcasting update packets
of a time-sensitive source to N receivers, as depicted in Fig. 1.
We consider a continuous time scenario. If the BS decides to
broadcast a packet at time tj , then it sends a snapshot of the
source at time tj , and successful transmission to receiver i
experiences a random delay Xi,j . In this work, we assume
Xi,j is an independent random variable that follows a shifted
exponential distribution, whose probability density function
f(x) is as follows:

f(x) =

{
λe−λ(x−c), x ≥ c;

0, else,
(1)

where c represents the fixed or the minimum transmission
delay determined by transmission distance, power, etc. Due
to limited channel capacity, we assume the link from the BS
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to the receiver can transmit only one packet at a time. Thus,
if the BS decides to broadcast a new packet, the previous
transmission from BS to receiver i will be suspended if it is
still not received and the transmission of the new update packet
begins immediately. Different from previous work [9], [10],
[13], we consider the broadcasting network to be unilateral
and the receivers are not allowed to send any feedback to the
source.

Fig. 1: System model

B. AoI Metric

Notice that due to transmission delay, each receiver cannot
have the newest information about the time-sensitive source.
To measure how ”fresh” the data is from the perspective
of each receiver, the metric, Age of Information (AoI) [1]
is proposed. By definition, the AoI measures the difference
between the current time t and the time-stamp when the
freshest information at the receiver is generated. Let ui(t) be
the generation time-stamp of the freshest information received
by receiver i. Then

ui(t) = argmax{tj |tj +Xi,j ≤ t}.

Thus the AoI of receiver i at time t, denoted by Δi(t), can
be computed as follows:

Δi(t) = t− ui(t). (2)

To better illustrate the concept of AoI, a sample path of AoI
evolution is plotted in Fig. 2.

C. Optimization Problem

Our goal is to design a transmission strategy in the absence
of receiver feedback so that each receiver can possess fresh
information about the source. The data freshness of receivers
in the network is measured by the average AoI, which can be
computed as follows since each receiver is identical:

Δ = lim
T→∞

1

T

∫ T

0

Δ(t) dt. (3)

We aim at minimizing Δ by designing broadcasting strategy,
i.e., the time to broadcast update {t1, t2, · · · }.

Fig. 2: A sample path of AoI evolution. The transmission
starting time-stamps and receiving time-stamps are marked in
solid circles and crosses, respectively.

III. PROBLEM RESOLUTION

A. Average AoI under Fixed Interval Policy

In this work, we consider broadcasting with fixed intervals,
i.e., there exists a constant Y such that tj+1− tj = Y,∀j ≥ 1.

Theorem 1: Under fixed interval policy with Y , the average
AoI under shifted exponential delay can be computed by:

Δ =
1

λ
+

Y

2
+

c

1− e−λ(Y−c)
. (4)

Proof: The average AoI can be computed by summing up
the isosceles trapezoids under the AoI evolution curve depicted
in Fig. 2. Each trapezoid can be divided into a parallelogram
and an isosceles right triangle. Let Mk be the number of
broadcasting intervals between the generation time-stamp of
the k-th received packet and the (k + 1)-th received packet.
Then the bottom edge of the parallelogram and the right-
angle side of the triangle equal to MkY . And the height of
the parallelogram equals the transmission delay of the k-th
received packet Xi,k. Then the size of the trapezoid Sk can
be computed by:

Sk = MkY ·Xi,k +
1

2
M2

kY
2. (5)

Let KT be the number of received packets by the receiver
at time T , then the average AoI can be written out as follows:

Δ = lim
T→∞

1

T

∫ T

t=0

Δ(t)dt

= lim
T→∞

∑KT

k=1 Sk∑KT

k=1 MkY

(a)
=

E[MkXi,k|Xi,k ≤ Y ]

E[Mk]
+

E[M2
k ]Y

2E[Mk]

(b)
= E[Xi,k|Xi,k ≤ Y ] +

E[M2
k ]Y

2E[Mk]
, (6)

where (a) is obtained by plugging Eq. (5) into Eq. (3) and (b)
is obtained because Mk is independent of transmission delay
Xi,k.
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According to the distribution of Eq. (1), the expected
transmission delay when Xi,k ≤ Y can be computed by:

E[Xi,k|Xi,k ≤ Y ]

=

∫ Y

0
xf(x) dx∫ Y

0
f(x) dx

=
λc− λY e−λ(Y−c) + 1− e−λ(Y−c)

λ(1− e−λ(Y−c))
. (7)

Let p =
∫ Y

0
f(x)dx = 1 − e−λ(Y−c) be the probability

that the transmission delay is smaller than Y and hence the
packet has been received successfully. The number of updates
between intervals Mk follows an independent geometric dis-
tribution parameterized by p. Thus, we can compute E[M2

k ]
2E[Mk]

as follows:

E[M2
k ]

E[Mk]
=

2− p

p
=

1 + e−λ(Y−c)

1− e−λ(Y−c)
. (8)

Finally, plugging Eq. (7) and Eq. (8) into Eq. (6), we can
compute the average AoI as follows:

Δ =
1

λ
+

c

1− e−λ(Y−c)
− Y e−λ(Y−c)

1− e−λ(Y−c)

+
Y (1 + e−λ(Y−c))

2(1− e−λ(Y−c))

=
1

λ
+

c

1− e−λ(Y−c)
+

Y

2
.

And that is the end of all the proof.

B. Determination of the Optimum Interval Y

Next, we aim at minimizing Δ by choosing Y . First, we
show that for given λ and c, the average AoI in Eq. (4) is
a convex function for Y > c. The convexity is obtained by
investigating its second order derivative:

d2Δ

dY 2
=

d

dY

(
dΔ

dY

)

=
d

dY

(
1

2
− λce−λ(Y−c)

(1− e−λ(Y−c))2

)

=
λ2ce−λ(Y−c)

[
1 + e−λ(Y−c)

]
(1− e−λ(Y−c))3

. (9)

When the fixed interval Y > c, the denominator in Eq. (9)
(1−e−λ(Y −c))3 > 0, indicating the convexity of Δ. According
to Eq. (1), if the chosen fixed interval Y is smaller than the
smallest transmission delay c, none of the receivers can receive
the update packet successfully, which leads to infinite average
AoI and is thus far from optimum. Hence, the optimum
interval Y ∗ > c. Due to the convexity at (c,∞), the sufficient
and necessary condition for Y ∗ is:

dΔ

dY

∣∣∣∣
Y=Y ∗

=
1

2
− λce−λ(Y ∗−c)

(1− e−λ(Y ∗−c))2
= 0. (10)

Solving Eq. (10) yields the optimum interval, i.e.,

Y ∗ = c− ln(λc+ 1−√
λ2c2 + 2λc)

λ
. (11)

Plugging Eq. (11) into Eq. (4), the minimum average AoI
Δ can be computed by:

Δ
∗
=

1

λ
+

c

2
− 1

2λ
ln(λc+ 1−

√
λ2c2 + 2λc)

+
c√

λ2c2 + 2λc− λc
.

(12)

Remark: A transmission policy that utilizes transmission
feedback from the receivers called the Earliest k Stopping
policy is proposed in [10]. That policy optimizes the average
AoI by computing the optimum number of ACKs k, which
depends on channel parameters c and λ, such that a new
transmission starts once k out of n receivers have received the
current packet. The average AoI Δ∗

k obtained by the Earliest
k Stopping policy is the same as Eq. (12) after approximation.

IV. SIMULATION RESULTS

In this section, we provide simulation results to illustrate
the performance of the proposed algorithm.

First, we compare the average AoI by applying the proposed
fixed interval policy, denoted by π∗

Y and the Earliest k Stop-
ping policy, denoted by πEk in [10] in different scenarios. In
Fig. 3, we consider two scenarios with n = 3 and n = 20,
respectively. The performance of fixed interval policy π∗

Y

and the Earliest k Stopping policy πEk are marked in red
dashed lines and blue solid lines, respectively. From Fig. 3,
the average AoI difference between the proposed fixed interval
policy π∗

Y and the Earliest k Stopping policy πEk decreases
when the number of receivers n increases. This phenomenon
suggests a good average AoI performance by choosing the
optimum fixed interval Y when the number of receivers in the
network is large.

To figure out how fixed interval policy achieves such good
AoI performance without feedback from the receivers, we plot
the optimum interval as a function of c and λ in Fig. 4. For
further analysis, Fig. 4 also depicts the expected delay of a
single receiver and the expected transmission delay of the first
k receivers with 20 receivers in total. The optimum interval is
marked in red dashed lines, and the expected delay of a single
receiver and first k receivers are marked in green dotted lines
and blue solid lines respectively. Fig. 4 reveals the optimum
interval is near to the expected delay of the first k success
transmissions. Moreover, as n becomes larger, the variance
of the update interval also decreases. Thus both two factors
lead to compatible performance between the proposed fixed
interval policy and the Earliest k stopping policy.

Notice that the random delay consists of two parts, the fixed
part c and the stochastic part whose expected value is 1

λ . The
optimum interval increases monotonically when the fixed part
c increases and decreases with λ. Moreover, the product of
channel parameters λc describes the relative sizes of fixed
and stochastic delay. From Fig. 4, when λc � 1, i.e., the
fixed delay is much smaller than the stochastic one (see the
left bottom of Fig. 4), the optimum interval is smaller than
the expectation E[Xi,j ]. This phenomenon suggests leveraging
fixed delay can make up for the potential large stochastic delay
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Fig. 3: Comparison of the proposed fixed interval policy π∗
Y

and the Earliest k Stopping policy πEk in a multi-cast network
with n = 3 (top) and n = 20 (bottom).

through frequent updating; when λc � 1 (e.g., the right top
of Fig. 4), the optimum interval is relatively equal to and
larger than E[Xi,j ]. Then, to minimize the average AoI of
all the receivers when the fixed delay is much larger than the
stochastic one, the BS tends to wait for a much longer interval
than the expected delay so that the success delivery of more
receivers can be guaranteed.

V. CONCLUSION

In this work, we study the fixed interval transmission
strategy that minimizes the average AoI in a unilateral multi-
cast network. We derived the optimum interval and computed
the average AoI under such strategy. Both theoretical analysis
and simulation results showed that, in the absence of feedback
from the receivers, the optimum fixed interval transmission
strategy achieves a compatible average AoI performance as
the Earliest k Stopping policy. Interesting extensions to the
work includes studying transmission strategies when the delay
distribution of receivers are not identical.
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