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Background

Real-time service requires fresh data

Real-time data analytics becomes important

Research Problem

How to optimize information freshness of a time-varying process?
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This Work: A Special Example–the Wiener Process

• Point-to-point link: Sensor senses a Wiener process and submits

samples to the Destination

• Channel: FIFO queue with i.i.d. transmission times

• Feedback: zero-delay ACK

• Busy/Idle state of the channel is known to the sensor.

The transmission delay Dk of sample k in the channel is i.i.d following

distribution PD .

Challenge

We consider the delay distribution PD is unknown before making

sampling decisions.
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Existing Work and Main Contributions

Existing work

• Online Age of Information (AoI) Minimization

• min AoI using RL/Bandits (Atay et al. (2021); Leng and Yener

(2021), ...) Theoretic analysis are missing.

• min AoI under unknown delay statistics (Tang et al. (2022))

Requires prior knowledge about mean and moment of PD

• Off-line MSE minimum sampling Sun et al. (2020)

Contributions

• Propose an online learning algorithm to minimize the MSE based on

Robbins-Monro.

• Derive the convergence rate of the proposed online algorithm. No

prior information on PD is required.

• Establish converse result for any causal sampling algorithm. Verify

minimax order optimal using non-parametric statistics.
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Problem Formulation: Minimizing MSE

MMSE Estimator: X̂t = Xi(t), i(t) := arg min
i
{Ri ≤ t}︸ ︷︷ ︸

value of the most recently received sample

.

Optimization Problem

mseopt , inf
π∈Π

lim sup
T→∞

1

T
E

[∫ T

t=0

(Xt − X̂t)
2dt

]
, (1a)

s.t. lim inf
K→∞

1

K
E

 K∑
k=1

(Sk+1 − Sk)︸ ︷︷ ︸
k-th sampling interval

 ≥ 1

fmax
. (1b)

Optimum policy π? achieving mseopt :Sun et al. (2020)

After receiving ACK of sample k , wait Wk ≥ 0 to take sample (k + 1) . 5



Structure of π?:

Frame k

interval between k-th and

the (k + 1)-th sample.

Optimal Policy: a threshold structure

Wk = inf{t ≥ 0| |XRk+t − XSk
|︸ ︷︷ ︸

Signal Difference

w.r.t start of frame k

≥
√

3(γ? + ν?)}.

where,

γ? = lim supK→∞
Eπ? [

∑K
k=1

1
6 (XSk+1

−XSk
)4]

Eπ? [
∑K

k=1(Sk+1−Sk )]
= avg. reward

avg. frame length

ν?: satisfy sampling frequency cons.

6



Structure of π?:

Frame k

interval between k-th and

the (k + 1)-th sample.

Optimal Policy: a threshold structure

Wk = inf{t ≥ 0| |XRk+t − XSk
|︸ ︷︷ ︸

Signal Difference

w.r.t start of frame k

≥
√

3(γ? + ν?)}.

where,

γ? = lim supK→∞
Eπ? [

∑K
k=1

1
6 (XSk+1

−XSk
)4]

Eπ? [
∑K

k=1(Sk+1−Sk )]
= avg. reward

avg. frame length

ν?: satisfy sampling frequency cons. 6



Online Algorithm: Finding γ? and ν? (1)

γ? = lim sup
K→∞

Eπ?

 K∑
k=1

1

6
(XSk+1

− XSk
)4︸ ︷︷ ︸

Reward Ek in frame k

/Eπ?

 K∑
k=1

(Sk+1 − Sk)︸ ︷︷ ︸
Length of frame k


Problem: Guessing the root of E (γ?)− γ?L(γ?) = 0

Solution: Stochastic Approximation using Robbins-Monro

In frame k :

• Sampling: assume current γk and νk is correct, i.e., wait

Wk = inf{t ≥ 0||XRk+t − XSk
| ≥

√
3(γk + νk)}

• Compute reward Ek and length Lk :

Ek = (XSk+1
− XSk

)4/6, Lk = Dk + Wk .

• Update γk : γk+1 = (γk + ηk(Ek − γkLk))+
.
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Online Algorithm: Finding γ? and ν? (2)

ν?: Virtual queue recording sampling interval violation

Update dual optimizer νk :

νk+1 =

(
νk +

1

V
(Lk −

1

fmax
)

)+

. (2)
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Analysis (1)–Approximating γ?:

Updating policy represented by {γk}
If the delay D is fourth order bounded,

lim
K→∞

γk = γ?,w.p.1, (3)

and the approximation error:

E[(γk − γ?)2] = O(1/k). (4)

Implication: The optimum policy π? is learned almost surely.

Proof Challenge: Sequence γk is in open set [0,∞), i.e.

γk+1 = (γk + ηkEk − ηkγkLk))+
.

Queueing system is also unbounded, i.e.,

Queue[t + 1] = [Queue[t] + Arrival[t]− Departure[t]]+

Drift analysis from heavy traffic can overcome the challenge!
9



Analysis (2)–MSE Performance

Learning Rate

If the delay D is forth order bounded, the time-average MSE of the

proposed algorithm converges to mseopt almost surely, i.e.,

lim
K→∞

∫ SK+1

t=0
(Xt − X̂t)

2dt

SK+1
= Eπ? ,w.p.1, (5)

and the convergence rate:

∆K := E

[∫ SK+1

t=0

(Xt − X̂t)
2dt

]
− E[SK+1]Eπ? = O (lnK ) . (6)
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Convergence Rate Analysis:

the perturbed ODE method
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Analysis (3)–Converse Result

Converse Result

The average AoI regret for any causal policy π satisfies:

inf
π

sup
P

(
E

[∫ SK+1

t=0

(Xt − X̂t)
2dt

]
− E[SK+1]Eπ?

)
= Ω (lnK ) . (7)

Step 1: Link ∆k = E
[∫ SK+1

t=0
(Xt − X̂t)

2dt
]
− E[SK+1]Eπ? with error

(γ̂k − γ?)2.

Step 2: Bounding E[(γ̂k − γ?)2] using Le Cam’s two-point method.

Why a minimax bound?

We do not restrict PD belong to any specific family (e.g.,

non-exponential).
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Simulations (1)
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Figure 1: MSE evolution with frame E[
∫ SK+1

t=0
(Xt − X̂t)

2dt]/E[SK+1] (left)

Signal-aware optimum sampling is much better than signal-ignorant AoI

optimal sampling.
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Simulations (2)
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Figure 2: The time average MSE (up) and sampling interval (down).

πonline can satisfy the sampling frequency constraint, smaller V converges faster. 13



Conclusions

• Contribution:

• The first to use Robbins-Monro to AoI related problems Neely

(2021).

• Develop a new method for proving convergence rate of stochastic

approximation algorithm in an open set.

• Converse bound for online algorithm using non-parametric statistics.

• See our paper!

H. Tang, Y. Sun and L. Tassiulas, “Sampling of the Wiener Process

for Remote Estimation over a Channel with Unknown Delay

Statistics”, Mobihoc2022
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Thank you! Questions?
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