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Research Problem

How to optimize information freshness of a time-varying process?



This Work: A Special Example—-the Wiener Process

e Point-to-point link: Sensor senses a Wiener process and submits
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e Channel: FIFO queue with i.i.d. transmission times
e Feedback: zero-delay ACK

e Busy/Idle state of the channel is known to the sensor.

The transmission delay Dy of sample k in the channel is i.i.d following
distribution Pp.
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e Channel: FIFO queue with i.i.d. transmission times
e Feedback: zero-delay ACK

e Busy/Idle state of the channel is known to the sensor.

The transmission delay Dy of sample k in the channel is i.i.d following
distribution Pp.

Challenge

We consider the delay distribution Pp is unknown before making
sampling decisions.



Existing Work and Main Contributions

Existing work

o Online Age of Information (Aol) Minimization
e min Aol using RL/Bandits (Atay et al. (2021); Leng and Yener
(2021), ...) Theoretic analysis are missing.
e min Aol under unknown delay statistics (Tang et al. (2022))
Requires prior knowledge about mean and moment of Pp

o Off-line MSE minimum sampling Sun et al. (2020)
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Existing work

o Online Age of Information (Aol) Minimization

e min Aol using RL/Bandits (Atay et al. (2021); Leng and Yener
(2021), ...) Theoretic analysis are missing.

e min Aol under unknown delay statistics (Tang et al. (2022))
Requires prior knowledge about mean and moment of Pp

o Off-line MSE minimum sampling Sun et al. (2020)

Contributions

e Propose an online learning algorithm to minimize the MSE based on
Robbins-Monro.

e Derive the convergence rate of the proposed online algorithm. No
prior information on Pp is required.

e Establish converse result for any causal sampling algorithm. Verify
minimax order optimal using non-parametric statistics.
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Optimum policy 7* achieving mse,, :Sun et al. (2020)
After receiving ACK of sample k, wait Wy > 0 to take sample (k + 1) . 5
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Structure of 7*:

frame 1, frame 2 frame 3

Frame k

Value

interval between k-th and
the (k + 1)-th sample.
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Optimal Policy: a threshold structure
Wi=inf{t>0]  [Xee—Xs| > /307 o)}
| L ——

Signal Difference
w.r.t start of frame k
where,

K 1 4
v* = limsup B [Y §Xs0=X5)'] _ avg. reward
K—oo " g _, [ZkK:l(Skask)] avg. frame length

v*: satisfy sampling frequency cons. 6



Online Algorithm: Finding v* and v* (1)

K K

1
* = limsup E,« Z(Xs,.. — X5, )* E Ski1— S
7 = limsipEre |50 60. =6 | [E |3 (S =)

Reward Ej in frame k Lengthiofiitameli

Problem: Guessing the root of E(y*) — v*L(v*) =0
Solution: Stochastic Approximation using Robbins-Monro
In frame k:
e Sampling: assume current 7y, and v is correct, i.e., wait
Wy = inf{t > 0]| X, ++ — Xs,| > v/3(7k + vi)}
e Compute reward Ey and length Lg:
Ex = (X5, — X5,)*/6, L = Dic + W

e Update vi: Vi1 = (i + e Ex — L))"



Online Algorithm: Finding v* and v* (2)

v*: Virtual queue recording sampling interval violation

Update dual optimizer v:

Vit = <1/k + %(Lk - 1)>+. 2)

fmax



Analysis (1)—Approximating ~*:

Updating policy represented by {~,}

5

I the delay D is fourth order bounded, 4 _
Jim k=", w.p.1, (3) s
— 00 JL A
and the approximation error: e
E[(ve —7*)?] = O(1/k). (4) 7 mamer T

Implication: The optimum policy 7* is learned almost surely.

Proof Challenge: Sequence vk is in open set [0, 00), i.e.
Yesr = (Ve + Bk — mevicLe)) ™
Queueing system is also unbounded, i.e.,
Queue[t + 1] = [Queue[t] + Arrival[t] — Departure[t]]

Drift analysis from heavy traffic can overcome the challenge!



Analysis (2)-MSE Performance

Learning Rate
If the delay D is forth order bounded, the time-average MSE of the
proposed algorithm converges to mse,,: almost surely, i.e.,

(X, — X,)2dt

lim =0
K—o0 5K+1

=&, w.p.l, (5)

and the convergence rate:

Sk+1 R
/ (X — Rt
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L Convergence Rate Analysis:
the perturbed ODE method
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Analysis (3)—Converse Result

Converse Result

The average Aol regret for any causal policy 7 satisfies:

Sk41 R .
inf sup (]E / (Xe — Xo)?dt| — E[SKH]EW*) =Q(nK). (7)
T P t=0
Step 1: Link Ay =E {fjgl(xt - )“<t)2dr} _ E[Sk41]Ex with error
(Gx —7*)

Step 2: Bounding E[(5x — 7*)?] using Le Cam’s two-point method.

Why a minimax bound?
We do not restrict Pp belong to any specific family (e.g.,
non-exponential).
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Simulations (1)
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Figure 1: MSE evolution with frame E[ftszKO“(Xt — X:)2dt]/E[Sk.1] (left)

Signal-aware optimum sampling is much better than signal-ignorant Aol
optimal sampling.
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Simulations (2)
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Figure 2: The time average MSE (up) and sampling interval (down).

Tonline Can satisfy the sampling frequency constraint, smaller V converges faster. 13



Conclusions

e Contribution:
e The first to use Robbins-Monro to Aol related problems Neely
(2021).
e Develop a new method for proving convergence rate of stochastic
approximation algorithm in an open set.
e Converse bound for online algorithm using non-parametric statistics.

e See our paper!
H. Tang, Y. Sun and L. Tassiulas, “Sampling of the Wiener Process
for Remote Estimation over a Channel with Unknown Delay
Statistics”, Mobihoc2022
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Thank you! Questions?
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