

Sampling of the Wiener Process for Remote Estimation over a Channel with Unknown Delay Statistics

Haoyue Tang¹, Yin Sun² and Leandros Tassiulas¹

¹Yale Institute of Network Science, Yale University ²Department of ECE, Auburn University

- Introduction and Background
- System Model
- Off-line Policy Review
- An Online Learning Approach
- Theoretic Analysis
- Simulations

Background

Real-time service requires fresh data

Background

Real-time service requires fresh data

Real-time data analytics becomes important

Background

Real-time service requires fresh data

Real-time data analytics becomes important

Research Problem

How to optimize information freshness of a time-varying process?

This Work: A Special Example-the Wiener Process

Time Sensitive Source

- Point-to-point link: Sensor senses a Wiener process and submits samples to the Destination
- Channel: FIFO queue with i.i.d. transmission times
- Feedback: zero-delay ACK
 - Busy/Idle state of the channel is known to the sensor.

The transmission delay D_k of sample k in the channel is i.i.d following distribution \mathbb{P}_D .

This Work: A Special Example-the Wiener Process

Time Sensitive Source

- Point-to-point link: Sensor senses a Wiener process and submits samples to the Destination
- Channel: FIFO queue with i.i.d. transmission times
- Feedback: zero-delay ACK
 - Busy/Idle state of the channel is known to the sensor.

The transmission delay D_k of sample k in the channel is i.i.d following distribution \mathbb{P}_D .

Challenge

We consider the delay distribution \mathbb{P}_D is unknown before making sampling decisions.

Existing work

- Online Age of Information (AoI) Minimization
 - min Aol using RL/Bandits (Atay et al. (2021); Leng and Yener (2021), ...) Theoretic analysis are missing.
 - min Aol under unknown delay statistics (Tang et al. (2022)) Requires prior knowledge about mean and moment of \mathbb{P}_D
- Off-line MSE minimum sampling Sun et al. (2020)

Existing work

- Online Age of Information (AoI) Minimization
 - min Aol using RL/Bandits (Atay et al. (2021); Leng and Yener (2021), ...) Theoretic analysis are missing.
 - min Aol under unknown delay statistics (Tang et al. (2022)) Requires prior knowledge about mean and moment of P_D
- Off-line MSE minimum sampling Sun et al. (2020)

Contributions

- Propose an online learning algorithm to minimize the MSE based on Robbins-Monro.
- Derive the convergence rate of the proposed online algorithm. No prior information on ℙ_D is required.
- Establish converse result for any causal sampling algorithm. Verify minimax order optimal using non-parametric statistics.

Problem Formulation: Minimizing MSE

5

Structure of π^* :

Frame k

interval between k-th and the (k + 1)-th sample.

Optimal Policy: a threshold structure

$$W_k = \inf\{t \ge 0 | \quad |X_{R_k+t} - X_{S_k}| \quad \ge \sqrt{3(\gamma^* + \nu^*)}\}$$

Signal Difference w.r.t start of frame k

Structure of π^* :

Frame k

interval between k-th and the (k + 1)-th sample.

Optimal Policy: a threshold structure

$$W_k = \inf\{t \ge 0 | \quad |X_{R_k+t} - X_{S_k}| \quad \ge \sqrt{3(\gamma^* + \nu^*)}\}$$

Signal Difference w.r.t start of frame k

where,

$$\gamma^{\star} = \limsup_{K \to \infty} \frac{\mathbb{E}_{\pi^{\star}} \left[\sum_{k=1}^{K} \frac{1}{6} (X_{S_{k+1}} - X_{S_k})^4 \right]}{\mathbb{E}_{\pi^{\star}} \left[\sum_{k=1}^{K} (S_{k+1} - S_k) \right]} = \frac{\text{avg. reward}}{\text{avg. frame length}}$$

 $\nu^\star:$ satisfy sampling frequency cons.

Online Algorithm: Finding γ^* and ν^* (1)

$$\gamma^{\star} = \limsup_{K \to \infty} \mathbb{E}_{\pi^{\star}} \left[\sum_{k=1}^{K} \underbrace{\frac{1}{6} (X_{S_{k+1}} - X_{S_{k}})^{4}}_{\text{Reward } E_{k} \text{ in frame } k} \right] \Big/ \mathbb{E}_{\pi^{\star}} \left[\sum_{k=1}^{K} \underbrace{(S_{k+1} - S_{k})}_{\text{Length of frame } k} \right]$$

Problem: Guessing the root of $\overline{E}(\gamma^*) - \gamma^* \overline{L}(\gamma^*) = 0$ Solution: Stochastic Approximation using Robbins-Monro In frame k:

• **Sampling**: assume current γ_k and ν_k is correct, i.e., wait

$$W_k = \inf\{t \ge 0 | |X_{R_k+t} - X_{\mathcal{S}_k}| \ge \sqrt{3(\gamma_k + \nu_k)}\}$$

• Compute reward E_k and length L_k :

$$E_k = (X_{S_{k+1}} - X_{S_k})^4/6, L_k = D_k + W_k.$$

• Update γ_k : $\gamma_{k+1} = (\gamma_k + \eta_k (E_k - \gamma_k L_k))^+$.

 ν^* : Virtual queue recording sampling interval violation **Update dual optimizer** ν_k :

$$\nu_{k+1} = \left(\nu_k + \frac{1}{V}(L_k - \frac{1}{f_{\max}})\right)^+.$$
 (2)

Analysis (1)–Approximating γ^* :

Updating policy represented by $\{\gamma_k\}$ If the delay *D* is fourth order bounded,

$$\lim_{K \to \infty} \gamma_k = \gamma^{\star}, \text{w.p.1},$$

and the approximation error:

$$\mathbb{E}[(\gamma_k - \gamma^{\star})^2] = \mathcal{O}(1/k).$$

Implication: The optimum policy π^* is learned almost surely.

Proof Challenge: Sequence γ_k is in open set $[0, \infty)$, i.e.

$$\gamma_{k+1} = \left(\gamma_k + \frac{\eta_k \mathbf{E}_k}{\mathbf{E}_k} - \frac{\eta_k \gamma_k \mathbf{L}_k}{\mathbf{V}_k}\right)^+.$$

Queueing system is also unbounded, i.e.,

 $Queue[t + 1] = [Queue[t] + Arrival[t] - Departure[t]]^+$

Drift analysis from heavy traffic can overcome the challenge!

Analysis (2)–MSE Performance

Learning Rate

If the delay D is forth order bounded, the time-average MSE of the proposed algorithm converges to mse_{opt} almost surely, i.e.,

$$\lim_{K \to \infty} \frac{\int_{t=0}^{S_{K+1}} (X_t - \hat{X}_t)^2 \mathrm{d}t}{S_{K+1}} = \overline{\mathcal{E}}_{\pi^*}, \text{w.p.1}, \tag{5}$$

and the convergence rate:

$$\Delta_{\mathcal{K}} := \mathbb{E}\left[\int_{t=0}^{S_{\mathcal{K}+1}} (X_t - \hat{X}_t)^2 \mathrm{d}t\right] - \mathbb{E}[S_{\mathcal{K}+1}]\overline{\mathcal{E}}_{\pi^*} = \mathcal{O}\left(\ln \mathcal{K}\right).$$
(6)

Convergence Rate Analysis: the perturbed ODE method

Converse Result

The average AoI regret for any causal policy π satisfies:

$$\inf_{\pi} \sup_{\mathbb{P}} \left(\mathbb{E} \left[\int_{t=0}^{S_{K+1}} (X_t - \hat{X}_t)^2 dt \right] - \mathbb{E} [S_{K+1}] \overline{\mathcal{E}}_{\pi^*} \right) = \Omega \left(\ln K \right).$$
(7)

Step 1: Link $\Delta_k = \mathbb{E}\left[\int_{t=0}^{S_{K+1}} (X_t - \hat{X}_t)^2 dt\right] - \mathbb{E}[S_{K+1}]\overline{\mathcal{E}}_{\pi^*}$ with error $(\hat{\gamma}_k - \gamma^*)^2$.

Step 2: Bounding $\mathbb{E}[(\hat{\gamma}_k - \gamma^*)^2]$ using Le Cam's two-point method.

Why a minimax bound?

We do not restrict \mathbb{P}_D belong to any specific family (e.g., non-exponential).

Simulations (1)

Figure 1: MSE evolution with frame $\mathbb{E}[\int_{t=0}^{S_{K+1}} (X_t - \hat{X}_t)^2 dt] / \mathbb{E}[S_{K+1}]$ (left)

Signal-aware optimum sampling is much better than signal-ignorant Aol optimal sampling.

Simulations (2)

 π_{online} can satisfy the sampling frequency constraint, smaller V converges faster.

- Contribution:
 - The first to use Robbins-Monro to Aol related problems Neely (2021).
 - Develop a new method for proving convergence rate of stochastic approximation algorithm in an **open** set.
 - Converse bound for online algorithm using non-parametric statistics.
- See our paper!

H. Tang, Y. Sun and L. Tassiulas, "Sampling of the Wiener Process for Remote Estimation over a Channel with Unknown Delay Statistics", Mobihoc2022

Thank you! Questions?

References

- E. U. Atay, I. Kadota, and E. H. Modiano. Aging wireless bandits: Regret analysis and order-optimal learning algorithm. In *WiOpt*, pages 57–64. IFIP, 2021.
- S. Leng and A. Yener. An actor-critic reinforcement learning approach to minimum age of information scheduling in energy harvesting networks. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8128–8132, 2021. doi: 10.1109/ICASSP39728.2021.9415110.
- M. J. Neely. Fast learning for renewal optimization in online task scheduling. *Journal of Machine Learning Research*, 22(279):1–44, 2021.

- Y. Sun, Y. Polyanskiy, and E. Uysal. Sampling of the wiener process for remote estimation over a channel with random delay. *IEEE Transactions on Information Theory*, 66(2):1118–1135, 2020.
- H. Tang, Y. Chen, J. Sun, J. Wang, and J. Song. Sending timely status updates through channel with random delay via online learning. In *IEEE INFOCOM 2022 - IEEE Conference on Computer Communications*, pages 1819–1827, 2022. doi: 10.1109/INFOCOM48880.2022.9796970.