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Background

Real-time service requires fresh data

Real-time data analytics becomes important

Research Problem

How to measure and optimize information freshness?
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Freshness Metric: Age of Information

• By definition, the AoI at time t, denoted by A(t)

A(t) , t − Si(t), (1)

where i(t) := arg max{i |Ri ≤ t} is the index of the recently received

sample.

• No sample received: grows linearly

• New sample received: drops to packet delay

Previous Work

Minimizing AoI is different from max throughput/min delay
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Challenges

Goal: min AoI under unknown communication statistics

Existing work

• Unknown AoI penalty functions Tripathi and Modiano (2021)

• Utility/delay optimization under an AoI constraint Li (2021)

• min AoI using RL/Bandits (Atay et al. (2021); Leng and Yener

(2021), ...) Theoretic analysis are missing.

Contributions

• Reformulate AoI minimization problem as a Renewal-Reward

Process, then propose an online algorithm.

• Derive the convergence rate of the proposed online algorithm.

• Establish converse result for any causal sampling algorithm. Verify

minimax order optimal.
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System Model

• Point-to-point link: Sensor senses and submits samples to the

Destination

• Channel: FIFO queue with i.i.d. transmission times

• Feedback: zero-delay ACK

• Busy/Idle state of the channel is known to the sensor.

The transmission delay Dk of sample k in the channel is i.i.d following

distribution PD .

Assumption 1

PD is absolutely continuous and is first and second order bounded, i.e.,

D lb ≤ D := E[D] ≤ Dub,Mlb ≤ E[D2] ≤ Mub. (2)
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Problem Formulation

Minimizing the AoI under a sampling frequency constraint

Optimization Problem

inf
π∈Π

lim sup
T→∞

1

T
E

[∫ T

t=0

A(t)dt

]
, (3a)

s.t. lim inf
K→∞

1

K
E

[
K∑

k=1

(Sk+1 − Sk)

]
≥ 1

fmax
. (3b)

Observation: Samples waiting in the queues are not longer fresh.

Solution: Focus on policy that waits for Wk ≥ 0 to submit sample

(k + 1) after the ACK of the k-th sample is received.

6



A Counter-Intuitive Example

Suppose the transmission delay sequence is {0, 0, 2, 2, 0, 0, 2, 2, · · · }.
Sampling policy:

• Delay=0, wait for ε to take the next sample

• Delay=2, take the next sample immediately

A =
8 + 2ε+ ε2

4 + 2ε
. (4)

Zero Wait ε = 0, A = 2; ε = 1, A = 11/6.

Take away message

• Zero-wait is not AoI minimum.

• When delay is zero, the new sample taken is wasted!
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Problem Resolution

• Frame length k : Lk = Dk + Wk .

• Cumulative Age in frame k : Rk = 1
2 (Dk + Wk)2+Dk(Dk−1 + Wk−1).

Delay Dk is i.i.d, for stationary policy π:

Aπ = lim sup
K→∞

E
[∑K

k=1 Rk

]
E
[∑K

k=1 Lk
] = lim sup

K→∞

E
[∑K

k=1
1
2 (Dk + Wk)2

]
E
[∑K

k=1 Lk
] + D. (5)

Qk := 1
2 (Wk + Dk)2 and Lk are i.i.d ⇒

Renewal-Reward Process Optimization

8



Problem Resolution

• Frame length k : Lk = Dk + Wk .

• Cumulative Age in frame k : Rk = 1
2 (Dk + Wk)2+Dk(Dk−1 + Wk−1).

Delay Dk is i.i.d, for stationary policy π:

Aπ = lim sup
K→∞

E
[∑K

k=1 Rk

]
E
[∑K

k=1 Lk
] = lim sup

K→∞

E
[∑K

k=1
1
2 (Dk + Wk)2

]
E
[∑K

k=1 Lk
] + D. (5)

Qk := 1
2 (Wk + Dk)2 and Lk are i.i.d ⇒

Renewal-Reward Process Optimization

8



Problem Resolution

• Frame length k : Lk = Dk + Wk .

• Cumulative Age in frame k : Rk = 1
2 (Dk + Wk)2+Dk(Dk−1 + Wk−1).

Delay Dk is i.i.d, for stationary policy π:

Aπ = lim sup
K→∞

E
[∑K

k=1 Rk

]
E
[∑K

k=1 Lk
] = lim sup

K→∞

E
[∑K

k=1
1
2 (Dk + Wk)2

]
E
[∑K

k=1 Lk
] + D. (5)

Qk := 1
2 (Wk + Dk)2 and Lk are i.i.d ⇒

Renewal-Reward Process Optimization 8



Algorithm Design (1): Offline Policy

Assuming PD is known, computing π?:

γ? := min
π

lim sup
K→∞

E
[∑K

k=1
1
2 (Dk + Wk)2

]
E
[∑K

k=1(Dk + Wk)
] , s.t., E

[
1

K

K∑
k=1

(Dk + Wk)

]
≥ 1

fmax
.

• A Constrained Markov Process (CMDP) in a continuous space

• State: observed delay Dk ∈ R / Action: select Wk ∈ R.

Property 1: ∀π that satisfies the frequency constraint (Πcons),

lim sup
K→∞

E
[∑K

k=1
1
2
(Dk + Wk)2

]
E
[∑K

k=1(Dk + Wk)
] ≥ γ?.

• If γ? is known

min
π

(
1

2
E
[
(D + π(D))2

]
− γ?E [(D + π(D))]

)
, s.t.E[D +π(D)] ≥ 1

fmax
. (6)

Property 2: For given γ, equation (6) can be solved using Lagrange

L(π, γ, ν) := 1
2E
[
(D + π(D))2

]
− (γ + ν)E[(D + π(D))] + ν 1

fmax
.

π?γ,ν(d) = (γ + ν − d)+
. (7)

Offline Design: Compute γ? + ν? via Bi-section search Sun et al. (2017)
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Algorithm Design (2): Online Policy

How to obtain γ?, ν? when PD is unknown?

• γ? =
E[ 1

2
(D+π(D))2]

E[D+π(D)]
= arg minγ(E[Q]− γE[L])2: Robbins-Monro (SGD)

Neely (2021)

• Dual optimizer ν?: Virtual queue to satisfy sampling frequency constraint.

In frame k , observe transmission delay Dk and then:

• Generate Sample/Batch k: Wait for Wk = (γk + νk − Dk)+ to

take sample k + 1. The reward/length of frame k:

Qk =
1

2
(Dk + Wk)2, Lk = Dk + Wk . (8)

• Approximate γk via SGD: Goal: minγ (E[Q]− γE[L])2,

∂γ = −Lk(Qk − γLk).
γk+1 = [γk + ηk(Qk − γkLk)]γub

γlb
. (9)

(ηk = 1

kD lb
, Recall SGD in ML, step-sizes should be diminishing, γub and γlb can

be estimated from transmission delay D upper and lower bounds. )

• Update dual optimizer νk :

νk+1 =

(
νk +

1

V
(Lk −

1

fmax
)

)+

. (10)

10



Algorithm Design (2): Online Policy

How to obtain γ?, ν? when PD is unknown?

• γ? =
E[ 1

2
(D+π(D))2]

E[D+π(D)]
= arg minγ(E[Q]− γE[L])2: Robbins-Monro (SGD)

Neely (2021)

• Dual optimizer ν?: Virtual queue to satisfy sampling frequency constraint.

In frame k , observe transmission delay Dk and then:

• Generate Sample/Batch k: Wait for Wk = (γk + νk − Dk)+ to

take sample k + 1. The reward/length of frame k:

Qk =
1

2
(Dk + Wk)2, Lk = Dk + Wk . (8)

• Approximate γk via SGD: Goal: minγ (E[Q]− γE[L])2,

∂γ = −Lk(Qk − γLk).
γk+1 = [γk + ηk(Qk − γkLk)]γub

γlb
. (9)

(ηk = 1

kD lb
, Recall SGD in ML, step-sizes should be diminishing, γub and γlb can

be estimated from transmission delay D upper and lower bounds. )

• Update dual optimizer νk :

νk+1 =

(
νk +

1

V
(Lk −

1

fmax
)

)+

. (10)

10



Algorithm Design (2): Online Policy

How to obtain γ?, ν? when PD is unknown?

• γ? =
E[ 1

2
(D+π(D))2]

E[D+π(D)]
= arg minγ(E[Q]− γE[L])2: Robbins-Monro (SGD)

Neely (2021)

• Dual optimizer ν?: Virtual queue to satisfy sampling frequency constraint.

In frame k , observe transmission delay Dk and then:

• Generate Sample/Batch k: Wait for Wk = (γk + νk − Dk)+ to

take sample k + 1. The reward/length of frame k:

Qk =
1

2
(Dk + Wk)2, Lk = Dk + Wk . (8)

• Approximate γk via SGD: Goal: minγ (E[Q]− γE[L])2,

∂γ = −Lk(Qk − γLk).
γk+1 = [γk + ηk(Qk − γkLk)]γub

γlb
. (9)

(ηk = 1

kD lb
, Recall SGD in ML, step-sizes should be diminishing, γub and γlb can

be estimated from transmission delay D upper and lower bounds. )

• Update dual optimizer νk :

νk+1 =

(
νk +

1

V
(Lk −

1

fmax
)

)+

. (10) 10



Theoretic Analysis (1)

Constraint Satisfaction

Uk records the sampling constraint violation up to the k-th sample.

The proposed algorithm satisfies the sampling frequency constraint in

the sense that:

lim inf
K→∞

1

K
E

[
K∑

k=1

Uk

]
<∞. (11)

Proof: Lyapunov Drift Plus Penalty
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Theoretic Analysis (2)–Minimax Order Optimal

Learning Rate

If the delay D is bounded, the time-average AoI of the proposed

algorithm converges to Aπ? almost surely, i.e.,

lim
K→∞

∫ SK+1

t=0
A(t)dt

SK+1
= Aπ? ,w.p.1, (12)

and the convergence rate:

E
[∫ SK+1

t=0
A(t)dt

]
E[SK+1]

− Aπ? = O
(

lnK

K

)
. (13)

Converse Result

Let Pw be the set of probabilities so that, if delay D ∼ P ∈ Pw , the age

optimum sampling policy is not zero-wait, for any causal policy π:

inf
π

sup
P∈Pw

E
[∫ SK+1

t=0
A(t)dt

]
E[SK+1]

− Aπ?

 = Ω

(
lnK

K

)
. (14)

Convergence Rate Analysis: perturbed ODE method;

Converse Result: Le Cam’s two point method. 12



Simulations (1)

Figure 1: AoI evolution with time

(red denotes the confidence interval).
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Figure 2: AoI evolution with frame

E[
∫ SK+1

t=0
A(t)dt]/E[SK+1]

The proposed algorithm learns the AoI minimum sampling policy

adaptively when T →∞, the learning rate is faster than previous

method.
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Simulations (2)
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Figure 3: The time average AoI (up) and sampling interval (down).

πonline can satisfy the sampling frequency constraint, smaller V requires

less time to satisfy the sampling frequency constraint. 14



Conclusions

• Contribution:

Propose an online sampling strategy for AoI minimization.

• Theoretic Highlights:

• The first work that adapt a Robbins-Monro algorithm Neely (2021)

to an online AoI minimization problem.

• Analyze the convergence behaviour and regret performance of the

online learning algorithm.

• Apply the Le Cam’s two point method from statistics to the

stochastic network community for proving converse.

• Full paper submitted to IEEE Transactions on Information Theory:

H. Tang, Y. Chen, J. Wang, P. Yang and L. Tassiulas, “Age Optimal

Sampling under Unknown Delay Statistics”,

https://arxiv.org/abs/2202.13367
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Thank you! Questions?
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