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Background
Real-time service requires fresh data

Real-time data analytics becomes important

Research Problem
How to measure and optimize information freshness?
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Freshness Metric: Age of Information

By definition, the AoI at time t, denoted by A(t)

A(t) , t − Si(t), (1)

where i(t) := arg max{i |Ri ≤ t} is the index of the recently received sample.

No sample received: grows linearly

New sample received: drops to packet delay

Previous Work

Minimizing AoI is different from max throughput/min delay
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Challenges–Online Design

Existing work

Unknown AoI penalty functions/AoI constraint in known environment Li
(2021); Tripathi and Modiano (2021)

min AoI in unknown environment: using RL/Bandits (Atay et al. (2021);
Leng and Yener (2021), ...) Theoretic analysis are missing.

Age minimum sampling revisited–online algorithm

Reformulate AoI minimization problem as a Renewal-Reward Process, then
propose an online algorithm.

Derive the convergence rate of the proposed online algorithm.

Establish converse result for any causal sampling algorithm. Verify minimax
order optimal.
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System Model

Point-to-point link: Sensor senses and submits samples to the Destination

Channel: FIFO queue with i.i.d. transmission times

Feedback: zero-delay ACK
I Busy/Idle state of the channel is known to the sensor.

Delay Dk of sample k in the channel is i.i.d following an absolutely distribution PD .
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Problem Formulation

Minimizing the AoI under a sampling frequency constraint

Optimization Problem

inf
π∈Π

lim sup
T→∞

1

T
E

[∫ T

t=0

A(t)dt

]
, (2a)

s.t. lim inf
K→∞

1

K
E

[
K∑

k=1

(Sk+1 − Sk)

]
≥ 1

fmax
. (2b)

Observation: Samples waiting in the queues are not longer fresh.
Solution: Focus on policy that waits for Wk ≥ 0 to submit sample (k + 1) after
the ACK of the k-th sample is received.
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Problem Resolution

Frame length k : Lk = Dk + Wk .

Cumulative Age in frame k : Rk = 1
2 (Dk + Wk)2 +Dk(Dk−1 + Wk−1).

Delay Dk is i.i.d, for stationary policy π:

Aπ = lim sup
K→∞

E
[∑K

k=1 Rk

]
E
[∑K

k=1 Lk
] = lim sup

K→∞

E
[∑K

k=1
1
2 (Dk + Wk)2

]
E
[∑K

k=1 Lk
] + D. (3)

Qk := 1
2 (Wk + Dk)2 and Lk are i.i.d ⇒ Renewal-Reward Process Optimization
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Algorithm Design (1): Offline Policy
Assuming PD is known, computing π?:

γ? := inf
π

lim sup
K→∞

E
[∑K

k=1
1
2 (Dk + Wk)2

]
E
[∑K

k=1(Dk + Wk)
] , s.t., E

[
1

K

K∑
k=1

(Dk + Wk)

]
≥ 1

fmax
.

Step 1: Fractional Programming Reformulation (Assume γ? is known)

π? = arg min
π

1

2
(D + π(D))2︸ ︷︷ ︸

Reward

−γ? (D + π(D))︸ ︷︷ ︸
Length

 , s.t.E[D + π(D)] ≥ 1

fmax
. (4)

Step 2: Lagrange Reformulation (for a given γ)

L(π, γ, ν) :=
1

2
(D + π(D))2 − γ(D + π(D)) + ν(

1

fmax
− D − π(D))︸ ︷︷ ︸

freq cons,ν≥0

(5)

Step 3:
π?γ,ν(d) = minL(π, γ, ν) = (γ + ν − d)+

. (6)

Offline Design: Compute γ? + ν? via Bi-section search Sun et al. (2017)
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Algorithm Design (2): Online Policy
How to obtain γ?, ν? when PD is unknown?

γ? =
E[ 1

2
((γ?+ν?−D)+)2]

E[(γ?+ν?−D)+]
⇒ Q(γ?)− γ?L(γ?) = 0

Finding root of an equation: Robbins-Monro (SGD) Neely (2021)

Dual optimizer ν?: Virtual queue to satisfy sampling frequency constraint.

In frame k, observe transmission delay Dk and then:

Generate Sample/Batch k: Wait for Wk = (γk + νk − Dk)+ to take
sample k + 1. The reward/length of frame k:

Qk =
1

2
(Dk + Wk)2, Lk = Dk + Wk . (7)

Approximate γk via SGD: gνk (γ) := Q(γ)− γL(γ), using noisy observation
g̃νk (γk) = Qk − γkLk for gradient descent:

γk+1 = (γk + ηk g̃νk (γk))+ = (γk + ηk(Qk − γkLk))+ . (8)

(ηk = 1

kD lb
, diminishing step-sizes in SGD)

Update dual optimizer νk :

νk+1 =

(
νk +

1

V
(Lk −

1

fmax
)

)+

. (9)
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Theoretic Analysis (1)

Constraint Satisfaction
Uk records the sampling constraint violation up to the k-th sample. The proposed
algorithm satisfies the sampling frequency constraint in the sense that:

lim inf
K→∞

1

K
E

[
K∑

k=1

Uk

]
<∞. (10)

Proof: Lyapunov Drift Plus Penalty
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Theoretic Analysis (2)–Convergence Analysis

Convergence of proposed algorithm

The time-average AoI of the proposed algorithm converges to Aπ? almost surely,

lim
K→∞

∫ SK+1

t=0
A(t)dt

SK+1
= Aπ? ,w.p.1, (11)

and the cumulative AoI regret up to frame K :

E

[∫ SK+1

t=0

A(t)dt

]
− Aπ?E[SK+1] = O (lnK ) . (12)

General idea: view At as an ODE, show its convergence to Aπ? .
Perturbed ODE approach requires perturbations γk within a closed set.

γk+1 = (γk + ηk (Qk − γkLk))+ ⇒ queue = (queue + arrival− departure)+

γk ∈ [0,∞), novel analysis using Drift Method from Heavy-Traffic Analysis.
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Theoretic Analysis (3)–Converse Result

Converse Result
Let Pw be the set of delay distribution, if D ∼ P ∈ Pw , the age optimum
sampling policy is not zero-wait, for any online policy π:

inf
π

sup
P∈Pw

(
E

[∫ SK+1

t=0

A(t)dt

]
− Aπ?E[SK+1]

)
= Ω (lnK ) . (13)

Step 1: AoI regret lower bound⇒Estimation lower bound of E[(γ̂ − γ?)2]
given k samples.

Step 2: Le Cam’s two point method: for any distribution P1 and P2

inf
γ̂

sup
P

E
[
(γ̂ − γ)2

]
≥ (γ?1 − γ?2 )2 ·

(∫
min{P⊗k1 (dx),P⊗k2 (dx)}

)
. (14)

Construct two probabilities P1 and P2 that (γ?1 − γ?2 )2 is large but
DKL(P1||P2) is small.

Step 3: Estimate γ? : g(γ?) = 0⇒ Non-Parametric Estimation of Hölder
smooth function g(γ) at a given point γ.

Achievability O(lnK ), minimax order optimal.
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smooth function g(γ) at a given point γ.

Achievability O(lnK ), minimax order optimal.

Haoyue Tang Online Data Freshness Oriented Sampling ITA Graduation Day, 2022 13 / 24



Theoretic Analysis (3)–Converse Result

Converse Result
Let Pw be the set of delay distribution, if D ∼ P ∈ Pw , the age optimum
sampling policy is not zero-wait, for any online policy π:

inf
π

sup
P∈Pw

(
E

[∫ SK+1

t=0

A(t)dt

]
− Aπ?E[SK+1]

)
= Ω (lnK ) . (13)

Step 1: AoI regret lower bound⇒Estimation lower bound of E[(γ̂ − γ?)2]
given k samples.

Step 2: Le Cam’s two point method: for any distribution P1 and P2

inf
γ̂

sup
P

E
[
(γ̂ − γ)2

]
≥ (γ?1 − γ?2 )2 ·

(∫
min{P⊗k1 (dx),P⊗k2 (dx)}

)
. (14)

Construct two probabilities P1 and P2 that (γ?1 − γ?2 )2 is large but
DKL(P1||P2) is small.

Step 3: Estimate γ? : g(γ?) = 0⇒ Non-Parametric Estimation of Hölder
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Simulations (1)

Figure: AoI evolution with time (red
denotes the confidence interval).
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Figure: AoI evolution with frame
E[
∫ SK+1

t=0
A(t)dt]/E[SK+1]

The proposed algorithm learns the AoI minimum sampling policy adaptively when
T →∞, the learning rate is faster than previous method.
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Simulations (2)
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Figure: The time average AoI (up) and sampling interval (down).
πonline can satisfy the sampling frequency constraint, smaller V obeys better.

Haoyue Tang Online Data Freshness Oriented Sampling ITA Graduation Day, 2022 15 / 24



Challenges–Metric Constraint

AoI: Time difference between data generation and data usage.

Constraints
The source sometimes changes fast, sometimes changes slow.

If prior knowledge on how the source evolves can be obtained, AoI may not be a
good freshness metric.

Addressing the change of the source

Online Sampling of a Wiener Source.
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System Model

Point-to-point link: Sensor senses and submits samples to the Destination

Channel: FIFO queue with i.i.d. transmission times

Feedback: zero-delay ACK
I Busy/Idle state of the channel is known to the sensor.

Similar to the previous one, except we have some prior knownledge on source
evolution:

The source Xt is now a Wiener process.
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Problem Formulation
Design sampling strategy to minimize MSE

Optimization Problem

inf
π∈Π

lim sup
T→∞

1

T
E

[∫ T

t=0

(Xt − X̂t)
2dt

]
, (15a)

s.t. lim inf
K→∞

1

K
E

[
K∑

k=1

(Sk+1 − Sk)

]
≥ 1

fmax
. (15b)

MMSE Estimator:

X̂t = Xi(t), i(t) := arg min
i
{Ri ≤ t}. (16)

Similarly, consider policies wait for Wk to take the next sample.
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Problem Resolution

Frame length k:
Lk = Dk + Wk .

Cumulative Estimation Error
in frame k: Ek =∫ Sk+Dk

t=Sk
(Xt − XSt−1 )2dt +∫ Sk+1

t=Sk+Dk
(Xt − XSt )

2dt.

Eπ = lim sup
K→∞

E
[∑K

k=1 Ek

]
E
[∑K

k=1 Lk
] = lim sup

K→∞

E
[∑K

k=1
1
6 (XSk+1

− XSk
)4
]

E
[∑K

k=1 (Sk+1 − Sk)
] + D. (17)

Optimal Policy: Sk+1 = inf{t ≥ Rk ||Xt − XSk
| ≥

√
3(γ? + ν?)}, γ? = E[δX 4/6]

E[L] .
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Simulations (1)
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Figure: MSE evolution with frame E[
∫ SK+1

t=0
(Xt − X̂t)

2dt]/E[SK+1] (left); Regret Growth

Rate ∆k := E
[∫ SK+1

0
(X̂t − Xt)

2dt
]
− Eπ?E[Sk+1]. (Right)

Signal-aware optimum sampling is much better than signal-ignorant AoI optimal
sampling; Regret growth rate of O(ln k) is verified.
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Conclusions

Contribution:
I The first to use Robbins-Monro to AoI related problems Neely (2021).
I Develop a new method for proving convergence rate of stochastic

approximation algorithm in an open set.
I Converse bound for online algorithm using non-parametric statistics.
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Thank you! Questions?
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