

Scheduling to Minimize Age of Synchronization in Wireless Broadcast Networks with Random Updates

Haoyue Tang, Jintao Wang, Zihan Tang and Jian Song

ISIT, July 9, 2019

Outline

- Problem Formulation
 - Network model
 - Metric introduction and comparison
- Scheduling Policies
 - Markov Decision Process
 - Whittle's Index
- Numerical Simulations

Network Model

- BS broadcasts random information updates to users
- In each slot t, scheduling to user n succeeds with probability p_n
- An update of source n arrives with probability λ_n
- BS can only keep one snap shot of each source

What is the data freshness metric if there is no information change between two packet update?

• We measure the data freshness of user n with AoS $s_n(t)$ at the beginning of each slot

Metric Introduction--Definition

Age of Synchronization

• The time elapsed since the freshest message became desynchronized

Age of Information

• The time elapsed since the generation time-stamp of the freshest message

Suppose g_i , r_i are the generation and receiving time-stamp of the *i*-th update packet

The index of the freshest information at time t is: $q(t) = \arg \max_{n \in \mathbb{N}^+} \{r_n | r_n \le t\}$

Then:

$$AoS(t) = (t - g_{q(t)+1})^+, AoI(t) = t - g_{q(t)}$$

J. Zhong, R. D. Yates, and E. Soljanin, "Two Freshness Metrics for Local Cache Refresh," in 2018 IEEE International Symposium on Information Theory (ISIT), Jun. 2018, pp. 1924–1928.

Metric Introduction--Comparisons

Differences: AoS– use source as a reference

Aol– Inter-update generation duration is taken into account

Network Model—Age of Synchronization

- At the beginning of each slot, BS select user n, broadcasts the freshest information of source n $\begin{bmatrix} u_n(t) = 1 \end{bmatrix}$
- If transmission succeeds, packet will be received at the end of slot
- If the message at user *n* is desynchronized $s_n(t) \neq 0$:
 - User *n* is not scheduled $u_n(t) = 0$, $s_n(t+1) = s_n(t) + 1$
 - User *n* is scheduled $u_n(t) = 1$
 - Transmission fails w.p. $1 p_n : s_n(t+1) = s_n(t) + 1$

• Transmission succeeds w.p. p_n , $s_n(t+1)$ will also be determined by new packet arrival, thus: $s_n(t+1) = 1$, w. p. $\lambda_n p_n$; $s_n(t+1) = 0$, w. p. $(1 - \lambda_n)p_n$

• If the message at user *n* is synchronized $s_n(t) = 0$:

$$\sum_{s_n(t+1)=1, \text{w. p. } \lambda_n; s_n(t+1)=0, \text{w. p. } 1-\lambda_n}$$

Nhen $\lambda_n = 1, \text{AoS}=Ac$

Network Model—Problem Formulation

• Goal: design a non-anticipated scheduling policy subject to interference constraint to minimize average AoS at the beginning of each slot

$$\pi^{*} = \arg \min_{\pi \in \Pi_{NA}} \lim_{T \to \infty} \frac{1}{NT} \mathbb{E}_{\pi} \left[\sum_{t=1}^{T} \sum_{n=1}^{N} s_{n}(t) \right],$$
---Objective Function
s.t. $\sum_{n=1}^{N} u_{n}(t) \leq 1.$ ---Interference Constraint

Scheduling Policies—MDP(1)

- State: the current AoS of each node
 - $\mathbf{s}(t) = [s_1(t), \dots, s_N(t)]$ (countable but infinite)
- Action: $\mathbf{u}(t) = [u_1(t), \cdots, u_N(t)]$
- Transition probability: $Pr(\mathbf{s}'|\mathbf{s}, \mathbf{u}) = \prod_{n=1}^{N} Pr(s'_n|s_n, u_n)$
- One-step cost: the increment of the average AoS: $C(\mathbf{s}(t), \mathbf{u}(t)) = \frac{1}{N} \sum_{n=1}^{N} s_n(t)$
- The goal of the MDP is to minimize the average cost over infinite horizon

Scheduling Policies—MDP(2)

- Infinite state space?—A truncated MDP
 - Setting an upper bound on AoS, $x_n(t) = \max\{s_n(t), S_{\max}\}$
 - Refine the probability transfer function, cost function
- The optimum policy to the truncated MDP can be obtained by policy iteration, let $\pi(\mathbf{x})$ be the obtained optimum policy
- In each slot t, observe $s_n(t)$ of each user and compute $x_n(t)$, scheduling decision is made by: $\mathbf{u}(t) = \pi(\mathbf{x})$
- Problem: High computational complexity!

Scheduling Policies—Whittle's Index(1)

- To adopt the Restless Multi-arm Bandit Framework, we decouple each user and add a scheduling penalty C
- Then we consider the decoupled sub-problem:

$$\min_{\pi \in \Pi_{NA}} \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\pi} \left[\sum_{t=1}^{T} s(t) + Cu(t) \right]$$

- Properties:
 - The optimum solution holds a threshold structure, i.e., if it's optimum to schedule at s, then for all state s' > s the optimum strategy is to schedule the user
 - The threshold is a non-decreasing function of C

$$\tau = \left[\left(\frac{5}{2} - \frac{1}{p} - \frac{1}{\lambda} \right) + \sqrt{\left(\frac{5}{2} - \frac{1}{p} - \frac{1}{\lambda} \right)^2 + 2\left(\frac{c}{p} + \frac{1 - \lambda}{\lambda} \frac{1 - p}{p} \right) + 2\frac{1 - p}{p}} \right]$$

Indexability is guaranteed

Scheduling Policies—Whittle's Index(2)

• Deviation of Whittle's Index:

$$W(s) = \frac{\left(F_{s+1}(0) - F_s(0)\right)}{\left(\xi_1^{(s)} - \xi_1^{(s+1)}\right)/p}$$

where
$$F_s(C) = \frac{s(s-1)}{2}\xi_1^{(s)} + \frac{\xi_1^{(s)}}{p}\left(\frac{1}{p}-1\right) + \frac{\xi_1^{(s)}}{p}(s+C)$$
 is the total cost if apply s as threshold,

and $\xi_1^{(s)} = 1/(\frac{1-\lambda}{\lambda} + s + \frac{1}{p} - 1)$ is the probability that the bandit staying in state 1 if apply threshold policy τ

• Index Policy: in each time slot, select the node with the largest index $W_n(s_n(t))$

J. Gittins, K. Glazebrook, and R. Weber, Multi-armed bandit allocation indices. John Wiley & Sons, 2011.

Simulations

J. Sun, Z. Jiang, S. Zhou, and Z. Niu, "Optimizing information freshness in broadcast network with unreliable links and random arrivals: An approximate index policy," in to appear IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), April 2019.

Simulations

J. Sun, Z. Jiang, S. Zhou, and Z. Niu, "Optimizing information freshness in broadcast network with unreliable links and random arrivals: An approximate index policy," in to appear IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), April 2019.

Thank you! Q&A

More details and proofs see our supplementary materials: https://www.dropbox.com/s/ch6qhq1nhzroyey/draft.pdf?dl=0